From Physical to Human Capital Accumulation: Inequality in the Process of Development

Oded Galor and Omer Moav

A unified theory of inequality and economic development:

• Captures the changing role of inequality in the growth process

- Captures the changing role of inequality in the growth process
- Unifies the Classical and the Modern Paradigms

- Captures the changing role of inequality in the growth process
- Unifies the Classical and the Modern Paradigms
- Provides an intertemporal reconciliation between conflicting viewpoints about the effect of inequality on economic growth

- Captures the changing role of inequality in the growth process
- Unifies the Classical and the Modern Paradigms
- Provides an intertemporal reconciliation between conflicting viewpoints about the effect of inequality on economic growth
- Generates novel testable predictions that may resolve empirical disputes about the relationship between inequality and growth

The Classical Approach

The Classical Approach

Inequality is beneficial for growth

Inequality is beneficial for growth

• The marginal propensity to save increases with income

Inequality is beneficial for growth

- The marginal propensity to save increases with income
- Inequality channels resources towards individuals whose marginal propensity to save is higher

Inequality is beneficial for growth

- The marginal propensity to save increases with income
- Inequality channels resources towards individuals whose marginal propensity to save is higher

 \implies increases aggregate savings & capital accumulation

Inequality is beneficial for growth

- The marginal propensity to save increases with income
- Inequality channels resources towards individuals whose marginal propensity to save is higher
 - \implies increases aggregate savings & capital accumulation
 - \Longrightarrow enhances the development process

-		
<i>(</i>)	h	ectives
\sim	υı	ectives.

\sim		
	b.	ACTIVAC
\circ	D	CLIVES

Inequality is harmful for growth

Inequality is harmful for growth

- CMI increases the cost of investment in human capital for less endowed individuals
- Inequality increases the fraction of society for which investment in human capital is suboptimal

 \implies reduces human capital accumulation

Inequality is harmful for growth

- CMI increases the cost of investment in human capital for less endowed individuals
- Inequality increases the fraction of society for which investment in human capital is suboptimal

 \implies reduces human capital accumulation

 \Longrightarrow slows down the development process

• A unified theory of the dynamic implications of inequality on the growth process

- A unified theory of the dynamic implications of inequality on the growth process
- Places the dominating modern theories within a broader unified structure

- A unified theory of the dynamic implications of inequality on the growth process
- Places the dominating modern theories within a broader unified structure
- Provides an intertemporal reconciliation between the Classical viewpoint and the Modern perspective

		utio	a 1	heory
_ ~ `	ΟII	i i i i e		TIEOI V

• The replacement of physical capital accumulation by human capital accumulation as a prime engine of economic growth has changed the qualitative impact of inequality on the process of development

_ /	Instead	l boon	
- A (лппео	I THEON	
	,		

- The replacement of physical capital accumulation by human capital accumulation as a prime engine of economic growth has changed the qualitative impact of inequality on the process of development
- Early stages of industrialization: physical capital accumulation is a main engine of growth \Longrightarrow

- The replacement of physical capital accumulation by human capital accumulation as a prime engine of economic growth has changed the qualitative impact of inequality on the process of development
- Early stages of industrialization: physical capital accumulation is a main engine of growth \Longrightarrow
 - Inequality enhanced development by channeling resources towards individuals whose marginal propensity to save is higher

- The replacement of physical capital accumulation by human capital accumulation as a prime engine of economic growth has changed the qualitative impact of inequality on the process of development
- Early stages of industrialization: physical capital accumulation is a main engine of growth \Longrightarrow
 - Inequality enhanced development by channeling resources towards individuals whose marginal propensity to save is higher
- Later stages of development: the return to human capital increases due to capital-skill complementarity and human capital became the prime engine of growth =>

- The replacement of physical capital accumulation by human capital accumulation as a prime engine of economic growth has changed the qualitative impact of inequality on the process of development
- Early stages of industrialization: physical capital accumulation is a main engine of growth \Longrightarrow
 - Inequality enhanced development by channeling resources towards individuals whose marginal propensity to save is higher
- Later stages of development: the return to human capital increases due to capital-skill complementarity and human capital became the prime engine of growth =>
 - Inequality, due to credit constraints, is harmful for growth

Central Argument

A Unified Theory

Central Argument

Central Argument

Fundamental asymmetry between:

Central Argument

Fundamental asymmetry between:

• Human capital accumulation

Central Argument

Fundamental asymmetry between:

- Human capital accumulation
- Physical capital accumulation

A Unified Theory

Central Argument

• Human capital is embodied in humans \Longrightarrow

- Human capital is embodied in humans \Longrightarrow
 - Physiological constraints subjects its accumulation *at the individual level* to diminishing returns

- Human capital is embodied in humans \Longrightarrow
 - Physiological constraints subjects its accumulation *at the individual level* to diminishing returns
 - The accumulation of human capital would be larger if it would be widely distributed among individuals in society

- Human capital is embodied in humans \Longrightarrow
 - Physiological constraints subjects its accumulation *at the individual level* to diminishing returns
 - The accumulation of human capital would be larger if it would be widely distributed among individuals in society
- Physical capital is not embodied in humans \Longrightarrow
Human Capital vs. Physical Capital Accumulation

- ullet Human capital is embodied in humans \Longrightarrow
 - Physiological constraints subjects its accumulation *at the individual level* to diminishing returns
 - The accumulation of human capital would be larger if it would be widely distributed among individuals in society
- ullet Physical capital is not embodied in humans \Longrightarrow
 - Physical capital accumulation may benefit from the concentration of wealth among individuals whose marginal propensity to save is larger

A Unified Theory

Central Argument

Inequality and Physical and Human Capital Accumulation

Inequality and Physical and Human Capital Accumulation

• **Inequality** is conducive for **physical capital** accumulation, as long as the marginal propensity to save rises with income

Inequality and Physical and Human Capital Accumulation

- **Inequality** is conducive for **physical capital** accumulation, as long as the marginal propensity to save rises with income
- **Inequality** is harmful for **human capital** accumulation, as long as credit constraints are binding

A Unified Theory

Central Argument

Inequality and Growth in Different Stages of Development

Inequality and Growth in Different Stages of Development

• **Inequality** stimulates economic growth in stages of development in which **physical capital** accumulation is the prime engine of growth

Inequality and Growth in Different Stages of Development

- **Inequality** stimulates economic growth in stages of development in which **physical capital** accumulation is the prime engine of growth
- **Inequality** is harmful for economic growth in stages of development in which **human capital** accumulation is the prime engine of economic growth and credit constraints are still binding

A Unified Theory

Mechanism

Early Stages of Industrialization

A Unified Theory

Mechanism

Early Stages of Industrialization

• Labor (and thus human capital) is abundant and physical capital is scarce

Early Stages of Industrialization

- Labor (and thus human capital) is abundant and physical capital is scarce
- The return to physical capital is higher than the return to human capital

Early Stages of Industrialization

- Labor (and thus human capital) is abundant and physical capital is scarce
- The return to physical capital is higher than the return to human capital
- Physical capital accumulation is the main engine of growth

Early Stages of Industrialization

- Labor (and thus human capital) is abundant and physical capital is scarce
- The return to physical capital is higher than the return to human capital
- Physical capital accumulation is the main engine of growth

 \implies Inequality is conducive for growth

A Unified Theory

Mechanism

Δ	Instead	I heory
	Unneu	

• Physical capital accumulation complements human capital

A Unified Th	neory
--------------	-------

- Physical capital accumulation complements human capital
- The return to human capital increases sufficiently so as to induce human capital accumulation (Nelson and Phelps (1966), Shultz (1975), Foster and Rosenzweig (1996))

- Physical capital accumulation complements human capital
- The return to human capital increases sufficiently so as to induce human capital accumulation (Nelson and Phelps (1966), Shultz (1975), Foster and Rosenzweig (1996))
- Investment in human capital is sub-optimal due to CMI \Rightarrow the return to human capital is higher than on physical capital

- Physical capital accumulation complements human capital
- The return to human capital increases sufficiently so as to induce human capital accumulation (Nelson and Phelps (1966), Shultz (1975), Foster and Rosenzweig (1996))
- Investment in human capital is sub-optimal due to CMI \Rightarrow the return to human capital is higher than on physical capital
- Human capital accumulation is the main engine of growth

- Physical capital accumulation complements human capital
- The return to human capital increases sufficiently so as to induce human capital accumulation (Nelson and Phelps (1966), Shultz (1975), Foster and Rosenzweig (1996))
- Investment in human capital is sub-optimal due to CMI \Rightarrow the return to human capital is higher than on physical capital
- Human capital accumulation is the main engine of growth

 \implies Inequality is harmful for growth

Reconciliation: The Classical and Modern Approaches

Reconciliation: The Classical and Modern Approaches

• A positive effect of inequality on growth underlined by the **Classical Approach** reflects early stages of industrialization when physical capital accumulation was the prime engine of growth

Reconciliation: The Classical and Modern Approaches

- A positive effect of inequality on growth underlined by the **Classical Approach** reflects early stages of industrialization when physical capital accumulation was the prime engine of growth
- A negative effect of inequality on growth underlined by the **Modern Approach** reflects later stages of development when human capital accumulation becomes a prime engine of growth, and credit constraints are still binding

T	h	Ν.4		-1	
	ne	IVI	υu	ei	

Production

The Basic Structure of the Model

• Overlapping-Generations economy

The would	

- Overlapping-Generations economy
- *t* = 0, 1, 2, 3, ...

_				
	ho	140	dal	
	ne	IVIC	uer	

- Overlapping-Generations economy
- *t* = 0, 1, 2, 3, ...
- One good

_				
	ho	- N / I	00	
	ne	111	υu	Iei

- Overlapping-Generations economy
- *t* = 0, 1, 2, 3, ...
- One good
- Two factors:
 - Physical capital (PC)
 - Human Capital (HC)

_				
	ho	- N / I	00	
	ne	111	υu	Iei

• Output per-capita grows over time due to the accumulation of factors of production.

_				
	he	ΝЛ	00	
	116	1 1 1	υu	

- Output per-capita grows over time due to the accumulation of factors of production.
- The stock of physical capital: Output produced in the preceding period net of consumption and HC investment

- Output per-capita grows over time due to the accumulation of factors of production.
- The stock of physical capital: Output produced in the preceding period net of consumption and HC investment
- The level of HC: Outcome of education decisions, subject to borrowing constraint

_					
	ho	- N / I	00		
	ne.	1.01	00	e	

Production

Production of Final Output

The output produced at time t:

$$Y_t = F(K_t, H_t) \equiv H_t f(k_t)$$

_				
	ho	кл	00	
	ne	111	υu	e.

Production

Production of Final Output

The output produced at time t:

$$Y_t = F(K_t, H_t) \equiv H_t f(k_t)$$

 K_t - PC

_				
	ho.	N /1	00	
	ne	IVI	υu	e.

Production of Final Output

The output produced at time t:

$$Y_t = F(K_t, H_t) \equiv H_t f(k_t)$$

$$K_t$$
 - PC
 H_t - HC (efficiency units)

_				
	ho.	N /1	00	
	ne	IVI	υu	e.

Production of Final Output

The output produced at time t:

$$Y_t = F(K_t, H_t) \equiv H_t f(k_t)$$

$$K_t$$
 - PC
 H_t - HC (efficiency units)
 $k_t \equiv K_t/H_t$

The Model	Production	
Factor Prices		

Inverse demand for factors of production at time t

$$r_t = f'(k_t) \equiv r(k_t)$$
$$w_t = f(k_t) - f'(k_t)k_t \equiv w(k_t)$$

_					
	ho.	- N / I	<u>_</u>		
	ne.	111	υu	eı	

Individuals

Individuals

The Model	Individuals	
Individuals		

• Continuum of measure 1

The Model	Individuals	
Individuals		

- Continuum of measure 1
- Individuals have 1 parent and 1 child
| The Model | Individuals | |
|-------------|-------------|--|
| | | |
| Individuals | | |

- Continuum of measure 1
- Individuals have 1 parent and 1 child
- Identical in:

Preferences Innate abilities

The Model	Individuals	
Individuals		

- Continuum of measure 1
- Individuals have 1 parent and 1 child
- Identical in:

Preferences Innate abilities

• Differ in:

 $\mathsf{Parental} \text{ income} \Rightarrow \mathsf{Inv't} \text{ in } \mathsf{HC}$

-		 	
	he	ററ	e

-					
	ho.	- N / I	<u>_</u>		
	ne.	111	υu	eı	

- First period of life (Period t):
 - Human capital formation

-				
	he	ΝЛ	od	e
	IIC.	1.61	υu	

- First period of life (Period t):
 - Human capital formation
- Second period of life (Period t + 1):
 - Supply their efficiency units of labor

_				
	he	ΝЛ	00	
	IIC.	1	υu	C 1

- First period of life (Period t):
 - Human capital formation
- Second period of life (Period t + 1):
 - Supply their efficiency units of labor
 - Allocate income & inheritance between:

_				
	ho	кл	00	
	ne	111	υu	e.

Individuals of Generation t

- First period of life (Period t):
 - Human capital formation
- Second period of life (Period t + 1):
 - Supply their efficiency units of labor
 - Allocate income & inheritance between:

(a) Consumption (b) Transfers to children

_				
	ho.	N /1	00	
	ne.	101	00	e

Individuals of Generation t

- First period of life (Period t):
 - Human capital formation
- Second period of life (Period t + 1):
 - Supply their efficiency units of labor
 - Allocate income & inheritance between:

(a) Consumption (b) Transfers to children

- Transfers are allocated to:
 - Finance of offspring's education

_				
	ho.	N /1	00	
	ne.	101	00	e

Individuals of Generation t

- First period of life (Period t):
 - Human capital formation
- Second period of life (Period t + 1):
 - Supply their efficiency units of labor
 - Allocate income & inheritance between:

(a) Consumption (b) Transfers to children

- Transfers are allocated to:
 - Finance of offspring's education
 - Saving for offspring's future wealth

	т	he	M	ode	
--	---	----	---	-----	--

Individual i of Generation t: Wealth

Second period wealth:

$$I_{t+1}^{i} = w_{t+1}h_{t+1}^{i} + x_{t+1}^{i}$$

	т	he	M	ode	
--	---	----	---	-----	--

Individual i of Generation t: Wealth

Second period wealth:

$$I_{t+1}^{i} = w_{t+1}h_{t+1}^{i} + x_{t+1}^{i}$$

 w_{t+1} – wage

The Model	Т	he	N	lo	de	L
-----------	---	----	---	----	----	---

Individual i of Generation t: Wealth

Second period wealth:

$$I_{t+1}^{i} = w_{t+1}h_{t+1}^{i} + x_{t+1}^{i}$$

 w_{t+1} – wage h_{t+1}^{i} – efficiency units of labor

The Model	ΤI	he	N	10	de	L
-----------	----	----	---	----	----	---

Individual i of Generation t: Wealth

Second period wealth:

$$I_{t+1}^{i} = w_{t+1}h_{t+1}^{i} + x_{t+1}^{i}$$

$$w_{t+1}$$
 – wage
 h_{t+1}^{i} – efficiency units of labor
 x_{t+1}^{i} – inheritance

The Model	-		 	
THE MODEL		he	 00	
		iie.	 υu	

Individual i of Generation t: Budget Constraint

Second Period budget constraint:

 $c_{t+1}^{i} + b_{t+1}^{i} \leq I_{t+1}^{i}$

Individuals

Individual i of Generation t: Budget Constraint

Second Period budget constraint:

$$c_{t+1}^{i} + b_{t+1}^{i} \leq I_{t+1}^{i}$$

 c_{t+1}^{i} - consumption

Individuals

Individual i of Generation t: Budget Constraint

Second Period budget constraint:

$$c_{t+1}^{i} + b_{t+1}^{i} \leq I_{t+1}^{i}$$

$$c_{t+1}^{i}-$$
 consumption $b_{t+1}^{i}-$ transfers to the offspring

Transfer to offspring, b_{t+1}^i , is allocated between:

Transfer to offspring, b_{t+1}^i , is allocated between:

• Finance of offspring's education - e_{t+1}^{i}

Transfer to offspring, b_{t+1}^i , is allocated between:

- Finance of offspring's education e_{t+1}^{i}
- Saving for offspring's future wealth

$$s_{t+1}^i = b_{t+1}^i - e_{t+1}^i$$

Transfer to offspring, b_{t+1}^{i} , is allocated between:

- Finance of offspring's education e_{t+1}^i
- Saving for offspring's future wealth

$$s_{t+1}^i = b_{t+1}^i - e_{t+1}^i$$

Inheritance

$$x_{t+1}^{i} = s_{t}^{i} R_{t+1} = (b_{t}^{i} - e_{t}^{i}) R_{t+1}$$

Individuals

Individual i of Generation t: Human capital formation

Efficiency units of labor in period t + 1

$$h_{t+1}^i = h(e_t^i)$$

Individuals

Individual i of Generation t: Human capital formation

Efficiency units of labor in period t + 1

$$h_{t+1}^i = h(e_t^i)$$

$$e_t^i - expenditure$$
 on education

Individuals

Individual i of Generation t: Human capital formation

_				
	ho	кл	00	
	ne	111	υu	e.

Optimal Inv't in Education of Member i of Generation t

In the absence of borrowing constraints:

$$e_t^i = \arg \max[w_{t+1}h(e_t^i) + (b_t^i - e_t^i)R_{t+1}]$$

Individuals

Optimal Inv't in Education of Member i of Generation t

In the absence of borrowing constraints:

$$e_t^i = ext{arg max}[w_{t+1}h(e_t^i) + (b_t^i - e_t^i)R_{t+1}]$$

 e_t is unique and identical across members of generation t

	Т	he	M	od	el
--	---	----	---	----	----

т	ha	NЛ	00	اما
	ile i	1.61	00	iei

_				
	ho.	N /1	00	
	ne	IVI	υu	e.

	ΤI	he	М	od	el
--	----	----	---	----	----

$$e_t = e(k_{t+1}) \begin{cases} = 0 & \text{if} \quad k_{t+1} \leq \widetilde{k} \\ \\ > 0 & \text{if} \quad k_{t+1} > \widetilde{k} \end{cases}$$

Individuals

Optimal Inv't in Education of Member i of Generation t

$$e_t = e(k_{t+1}) \begin{cases} = 0 & \text{if} \quad k_{t+1} \leq \widetilde{k} \\ \\ > 0 & \text{if} \quad k_{t+1} > \widetilde{k} \end{cases}$$

where

$$e'(k_{t+1}) > 0$$
 if $k_{t+1} > \widetilde{k}$

_				
	ho	кл	00	
	ne	111	υu	e.

Borrowing Constraint of Member i of Generation t

Individuals cannot borrow to finance the education expenditure of their offspring:

The Model	-		 	
THE MODEL		he	 00	
		iie.	 υu	

Borrowing Constraint of Member i of Generation t

Individuals cannot borrow to finance the education expenditure of their offspring:

$$e_t^i = \min[e(k_{t+1}), b_t^i]$$

The Model	-		 	
THE MODEL		he	 00	
		iie.	 υu	

Preferences and Transfers of Member i of Generation t

• Preferences:

$$u_t^i = (1-\beta) \log c_{t+1}^i + \beta \log(\overline{\theta} + b_{t+1}^i)$$

Individuals

Preferences and Transfers of Member i of Generation t

• Preferences:

$$u_t^i = (1-\beta) \log c_{t+1}^i + \beta \log(\overline{\theta} + b_{t+1}^i)$$

• Optimal transfer to offspring:

$$b_{t+1}^{i} = b(I_{t+1}^{i}) \equiv \begin{cases} \beta(I_{t+1}^{i} - \theta) & \text{if } I_{t+1}^{i} \ge \theta \\ 0 & \text{if } I_{t+1}^{i} \le \theta \end{cases}$$

where $\theta \equiv \overline{\theta}(1-\beta)/\beta$

_				
	n e.	11/1/2	vсца	
		1010		
			_	

Optimal transfer of a member i of generation t

-		 	
	he	ററ	e

Saving of Member i of Generation t
_				
	ho.	кл	00	
	ne.	111	υu	ei.

Individuals

Saving of Member i of Generation t

$$s_t^i = \left\{egin{array}{ccc} b_t^i & ext{if} & k_{t+1} \leq \widetilde{k} \ \ b_t^i - e_t^i & ext{if} & k_{t+1} > \widetilde{k} \end{array}
ight.$$

Saving rate s_{t+1}^i / I_{t+1}^i is increasing in I_{t+1}^i

-				
	he	КЛ	00	
	i e	1 1 1	00	

_					
- I P		N //	00	1 A I	
	16	1.01		1 E I	

- Capitalists (R)
 - Fraction λ of all adult individuals

- Capitalists (R)
 - Fraction λ of all adult individuals
 - Equally own the *initial* capital stock

- Capitalists (R)
 - Fraction λ of all adult individuals
 - Equally own the *initial* capital stock
- Workers (P)
 - Fraction $1-\lambda$ of all adult individuals

- Capitalists (R)
 - Fraction λ of all adult individuals
 - Equally own the *initial* capital stock
- Workers (P)
 - Fraction 1λ of all adult individuals
 - No ownership over the *initial* capital stock

-				
	he	ΝЛ	od	e
	IIC.	1.61	υu	

Factor Accumulation

$$\begin{aligned}
\mathcal{K}_{t+1} &= \int_{0}^{1} s_{t}^{i} di = \lambda (b_{t}^{R} - e_{t}^{R}) + (1 - \lambda) (b_{t}^{P} - e_{t}^{P}) \\
&= \mathcal{K} (b_{t}^{R}, b_{t}^{P}, k_{t+1}) \\
\mathcal{H}_{t+1} &= \int_{0}^{1} h_{t+1}^{i} di = \lambda h(e_{t}^{R}) + (1 - \lambda) h(e_{t}^{P}) \\
&= \mathcal{H} (b_{t}^{R}, b_{t}^{P}, k_{t+1})
\end{aligned}$$

-	1	N /	1.4	
	ne	IV	oc	lei

The Capital-Labor Ratio

$$k_{t+1} = \frac{K_{t+1}}{H_{t+1}} = \frac{K(b_t^R, b_t^P, k_{t+1})}{H(b_t^R, b_t^P, k_{t+1})}$$
$$k_{t+1} = \kappa(b_t^R, b_t^P)$$

-				
	he	- 14 /	00	
	i e		00	

The Evolution of Transfers within group $\mathsf{i}=\mathsf{R},\mathsf{P}$

$$b_{t+1}^{i} = \max\{\beta[w_{t+1}h(e_{t}^{i}) + (b_{t}^{i} - e_{t}^{i})R_{t+1} - \theta], 0\}$$

	1/ /1	00		
	1			
 _		_	_	

The Evolution of Transfers within group i = R,P

$$b_{t+1}^{i} = \max\{\beta[w_{t+1}h(e_{t}^{i}) + (b_{t}^{i} - e_{t}^{i})R_{t+1} - \theta], 0\}$$

$$b_{t+1}^i = \phi(b_t^i, k_{t+1})$$

The Model	-		 	
THE MODEL		he	 00	
		iie.	 υu	

The Evolution of Transfers within group i = R,P

$$b_{t+1}^{i} = \max\{\beta[w_{t+1}h(e_{t}^{i}) + (b_{t}^{i} - e_{t}^{i})R_{t+1} - \theta], 0\}$$

$$b_{t+1}^i = \phi(b_t^i, k_{t+1})$$

There exists \hat{k} , a critical level of k below which individuals who do not receive parental transfers (i.e., $b_t^i = e_t^i = 0$) do not transfer income to their offspring: $w(\hat{k}) = \theta$

_				
	ho.	N /1	00	
	ne	IVI	υu	e.

The Evolution of Transfers within group $\mathsf{i}=\mathsf{R},\mathsf{P}$

$$b_{t+1}^{i} = \max\{\beta[w_{t+1}h(e_{t}^{i}) + (b_{t}^{i} - e_{t}^{i})R_{t+1} - \theta], 0\}$$

$$b_{t+1}^i = \phi(b_t^i, k_{t+1})$$

There exists \hat{k} , a critical level of k below which individuals who do not receive parental transfers (i.e., $b_t^i = e_t^i = 0$) do not transfer income to their offspring: $w(\hat{k}) = \theta$

$$b_{t+1}^{i} = \phi(0, k_{t+1}) \begin{cases} = 0 & \text{if} \quad k_{t+1} \leq \widehat{k} \\ > 0 & \text{if} \quad k_{t+1} > \widehat{k} \end{cases}$$

· · ·	 0	

The Evolution of Transfers within Group i = R, P

$$b_{t+1}^{i} = \phi(b_{t}^{i}, k_{t+1}) = \phi(b_{t}^{i}, \kappa(b_{t}^{R}, b_{t}^{P}))$$
$$\equiv \psi^{i}(b_{t}^{R}, b_{t}^{P})$$

_					
- I P		N //	00	1 A I	
	16	1.01		1 E I	

The dynamical system

 $\{b^P_t, b^R_t\}_{t=0}^\infty$ such that:

The	Mor	lel.
- IIIC	10100	101

The dynamical system

 $\{b^P_t, b^R_t\}_{t=0}^\infty$ such that:

$$\begin{split} b^P_{t+1} &= \psi^P(b^R_t, b^P_t) \\ b^R_{t+1} &= \psi^R(b^R_t, b^P_t) \end{split}$$

• Regime I: PC Accumulation $(k \leq \tilde{k})$

- Regime I: PC Accumulation $(k \leq \tilde{k})$
- Regime II: HC Accumulation $(k > \tilde{k})$

- Regime I: PC Accumulation $(k \leq \tilde{k})$
- Regime II: HC Accumulation $(k > \tilde{k})$
 - Stage I of Regime II $(\tilde{K} < K \leq \hat{K})$

- Regime I: PC Accumulation $(k \leq \tilde{k})$
- Regime II: HC Accumulation $(k > \tilde{k})$
 - Stage I of Regime II $(\tilde{K} < K \leq \hat{K})$
 - Stage II of Regime II $(\hat{K} < K < K^*)$

- Regime I: PC Accumulation $(k \leq \tilde{k})$
- Regime II: HC Accumulation $(k > \tilde{k})$
 - Stage I of Regime II $(\tilde{K} < K \leq \hat{K})$
 - Stage II of Regime II $(\hat{K} < K < K^*)$
 - Stage III of Regime II $(K > K^*)$

Early stages of development $(k \leq \tilde{k})$

• K is the main engine of growth: $ho^{HC} <
ho^{K}$

- K is the main engine of growth: $\rho^{HC} < \rho^{K}$
- No investment in education

- K is the main engine of growth: $\rho^{HC} < \rho^{K}$
- No investment in education
- No Transfers within Group P

- K is the main engine of growth: $\rho^{HC} < \rho^{K}$
- No investment in education
- No Transfers within Group P
- Transfers within Group R \uparrow

- K is the main engine of growth: $\rho^{HC} < \rho^{K}$
- No investment in education
- No Transfers within Group P
- Transfers within Group R \uparrow
- Wages \uparrow

- K is the main engine of growth: $\rho^{HC} < \rho^{K}$
- No investment in education
- No Transfers within Group P
- Transfers within Group R \uparrow
- Wages \uparrow
- Income inequality \uparrow

The Conditional Dynamical System: Regime I

Inequality enhances the process development

 \bullet A transfer of wealth from Group R to P \Longrightarrow

- \bullet A transfer of wealth from Group R to P \Longrightarrow
 - Aggregate consumption \uparrow

- A transfer of wealth from Group R to P \Longrightarrow
 - Aggregate consumption \uparrow
 - Aggregate intergenerational transfers \downarrow

- A transfer of wealth from Group R to P \Longrightarrow
 - Aggregate consumption \uparrow
 - Aggregate intergenerational transfers \downarrow
 - Rate of capital accumulation \downarrow

Regime II: Human Capital Accumulation

Mature stages of development: $(k > \tilde{k})$

Regime II: Human Capital Accumulation

Mature stages of development: $(k > \tilde{k})$

• HC is the engine of growth: $\rho^{HC} \geq \rho^{K}$

Stage I of Regime II: HC Accumulation by group R

Stage I of Regime II $(\tilde{K} < K \leq \hat{K})$
- Stage I of Regime II $(\tilde{K} < K \leq \hat{K})$
 - Members of group *P*

- Stage I of Regime II $(\tilde{K} < K \leq \hat{K})$
 - Members of group *P*
 - No intergenerational transfers

- Members of group P
 - No intergenerational transfers
 - No investment in education

- Members of group P
 - No intergenerational transfers
 - No investment in education
- Members of group *R*

- Members of group P
 - No intergenerational transfers
 - No investment in education
- Members of group *R*
 - Transfers \uparrow

- Members of group P
 - No intergenerational transfers
 - No investment in education
- Members of group *R*
 - Transfers \uparrow
 - Expenditure on education \uparrow

- Members of group P
 - No intergenerational transfers
 - No investment in education
- Members of group *R*
 - Transfers \uparrow
 - Expenditure on education \uparrow
- Wages \uparrow

- Members of group P
 - No intergenerational transfers
 - No investment in education
- Members of group *R*
 - Transfers \uparrow
 - Expenditure on education \uparrow
- Wages \uparrow
- Income inequality \uparrow

The Conditional Dynamical System: Stage I of Regime II

Stage II of Regime II $(\hat{K} < K < K^*)$

• Members of group P (credit constrained): $\rho^{HC} > \rho^{K}$

- Members of group P (credit constrained): $\rho^{HC} > \rho^{K}$
 - Start to transfers

- Members of group P (credit constrained): $\rho^{HC} > \rho^{K}$
 - Start to transfers
 - Start to acquire education

- Members of group P (credit constrained): $\rho^{HC} > \rho^{K}$
 - Start to transfers
 - Start to acquire education
- Members of group R (not credit constrained): $\rho^{HC} = \rho^{K}$

- Members of group P (credit constrained): $\rho^{HC} > \rho^{K}$
 - Start to transfers
 - Start to acquire education
- Members of group R (not credit constrained): $\rho^{HC} = \rho^{K}$
 - Invest optimally in human and physical capital

Conditional Dynamical System: Stage II-III of Regime II

Stage II of Regime II: Effect of Inequality

• More equality is beneficial for the process development

Stage II of Regime II: Effect of Inequality

- More equality is beneficial for the process development
 - A transfer of wealth from group R to group P allows (due to credit constraint) a more efficient allocation of aggregate investment between HC and PC

Stage III of Regime II : Credit Constraints are not Binding

• All individuals are not credit constrained: $R^{HC} = R^{K}$

Stage III of Regime II : Credit Constraints are not Binding

- All individuals are not credit constrained: $R^{HC} = R^{K}$
- Inequality has no effect on the process of development

The changing Role of Inequality in the Development Process

Effect of Inequality in Regime II

Testable Implications

Testable Implications

The CMI approach

• The effect on inequality depends on the country's level of income. Inequality is beneficial for poor economies and harmful for rich ones

Testable Implications

The CMI approach

• The effect on inequality depends on the country's level of income. Inequality is beneficial for poor economies and harmful for rich ones

The Unified Approach

• The effect of inequality on growth depends on the relative return to human and physical capital. The higher is the relative return to human capital the more harmful is inequality for economic growth

• The replacement of physical capital accumulation by human capital accumulation as a prime engine of economic growth has changed the impact of inequality on the process of development

- The replacement of physical capital accumulation by human capital accumulation as a prime engine of economic growth has changed the impact of inequality on the process of development
 - Inequality stimulates economic growth in stages of development in which physical capital accumulation is the prime engine of growth

- The replacement of physical capital accumulation by human capital accumulation as a prime engine of economic growth has changed the impact of inequality on the process of development
 - Inequality stimulates economic growth in stages of development in which physical capital accumulation is the prime engine of growth
 - Inequality is harmful for economic growth in stages of development in which human capital accumulation is the prime engine of economic growth

- The replacement of physical capital accumulation by human capital accumulation as a prime engine of economic growth has changed the impact of inequality on the process of development
 - Inequality stimulates economic growth in stages of development in which physical capital accumulation is the prime engine of growth
 - Inequality is harmful for economic growth in stages of development in which human capital accumulation is the prime engine of economic growth
- Int'l capital inflow to LDCs and the adoption of skilled-biased technologies may place economies directly in the second stage in which inequality is harmful

References

References

References

Main Source:

Galor, Oded and Omer Moav, 2004, "From Physical to Human Capital Accumulation: Inequality and the Process of Development," Review of Economic Studies, 71(4), 1001-1026.

Related Papers:

- Galor, Oded and Omer Moav, 2006, "Das Human-Kapital: A Theory of the Demise of the Class Structure," Review of Economic Studies, 73(1), 85-117.
- Galor, Oded and Joseph Zeira, 1993, "Income Distribution and Macroeconomics," Review of Economic Studies, 60(1), 35-52.
- Galor, Oded and Omer Moav, and Dietrich Vollrath, 2009, "Inequality in Landownership, Human Capital Promoting Institutions and the Great Divergence" Review of Economic Studies, 76(1), 143-179.