
Genetic Diversity and Comparative Development

Ömer Özak

Department of Economics Southern Methodist University

Economic Growth and Comparative Development

Income per Capita across the Globe in 2010

Ömer Özak

- What is the origin of the vast inequality in income per capita across countries and regions?
- What is the impact of deep-rooted factors on the observed patterns of comparative development?
- What fraction of the variation in income per capita across countries could be attributed to the long shadow of history?
- How can policy mitigate the persistent effect of historical factors on comparative development?

- What is the origin of the vast inequality in income per capita across countries and regions?
- What is the impact of deep-rooted factors on the observed patterns of comparative development?
- What fraction of the variation in income per capita across countries could be attributed to the long shadow of history?
- How can policy mitigate the persistent effect of historical factors on comparative development?

- What is the origin of the vast inequality in income per capita across countries and regions?
- What is the impact of deep-rooted factors on the observed patterns of comparative development?
- What fraction of the variation in income per capita across countries could be attributed to the long shadow of history?
- How can policy mitigate the persistent effect of historical factors on comparative development?

- What is the origin of the vast inequality in income per capita across countries and regions?
- What is the impact of deep-rooted factors on the observed patterns of comparative development?
- What fraction of the variation in income per capita across countries could be attributed to the long shadow of history?
- How can policy mitigate the persistent effect of historical factors on comparative development?

Main Hypothesis

• The migration of humans out of Africa 70,000-90,000 BP affected

- The distribution of genetic diversity across the globe
- Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries

Main Hypothesis

- The migration of humans out of Africa 70,000-90,000 BP affected
 - The distribution of genetic diversity across the globe
 - Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries

- The migration of humans out of Africa 70,000-90,000 BP affected
 - The distribution of genetic diversity across the globe
 - Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries

- The migration of humans out of Africa 70,000-90,000 BP affected
 - The distribution of genetic diversity across the globe
 - Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries

• The Serial Founder Effect:

- Lower genetic diversity among indigenous populations at greater migratory distances from East Africa
- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:
 - The negative effect on the cohesiveness of society
 - The positive effect on innovations

- The Serial Founder Effect:
 - Lower genetic diversity among indigenous populations at greater migratory distances from East Africa
- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:
 - The negative effect on the cohesiveness of society
 - The positive effect on innovations

- The Serial Founder Effect:
 - Lower genetic diversity among indigenous populations at greater migratory distances from East Africa
- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:
 - The negative effect on the cohesiveness of society
 - The positive effect on innovations

- The Serial Founder Effect:
 - Lower genetic diversity among indigenous populations at greater migratory distances from East Africa
- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:
 - The negative effect on the cohesiveness of society
 - The positive effect on innovations

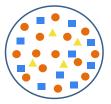
- The Serial Founder Effect:
 - Lower genetic diversity among indigenous populations at greater migratory distances from East Africa
- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:
 - The negative effect on the cohesiveness of society
 - The positive effect on innovations

- The Serial Founder Effect:
 - Lower genetic diversity among indigenous populations at greater migratory distances from East Africa
- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:
 - The negative effect on the cohesiveness of society
 - The positive effect on innovations

The Serial Founder Effect

• Exodus of modern humans from Africa (70-90K BP)

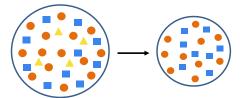
- Departing populations carry only a subset of the genetic diversity of their parental colonies
 - ⇒ Lower genetic diversity among indigenous populations at greater migratory distances from East Africa


The Serial Founder Effect

- Exodus of modern humans from Africa (70-90K BP)
- Departing populations carry only a subset of the genetic diversity of their parental colonies
 - $\bullet \implies$ Lower genetic diversity among indigenous populations at greater migratory distances from East Africa

The Serial Founder Effect

- Exodus of modern humans from Africa (70-90K BP)
- Departing populations carry only a subset of the genetic diversity of their parental colonies
 - $\bullet \implies {\sf Lower genetic diversity among indigenous populations at greater} \\ {\sf migratory distances from East Africa} \\$

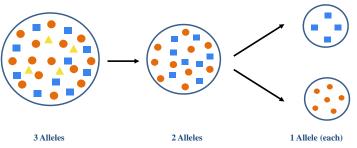

An Illustration of the Serial Founder Effect

3 Alleles

Original Population

An Illustration of the Serial Founder Effect

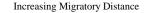
3 Alleles


Original Population

2 Alleles Founder Population

Increasing Migratory Distance

- >


An Illustration of the Serial Founder Effect

Original Population

Founder Population

Sub-founder Populations

- >

Genetic Diversity

Genetic Diversity – Measurement

• Expected Heterozygosity – Index of Genetic Diversity:

- The probability that two individuals, selected at random from a given population, are genetically different from one another (in a certain spectrum of genes)
- Measuring Expected Heterozygosity:
 - Gene-specific index capturing its allelic ("gene variant") frequencies in the population
 - Average over a gene-specific index for large spectrum of genes

Genetic Diversity - Measurement

- Expected Heterozygosity Index of Genetic Diversity:
 - The probability that two individuals, selected at random from a given population, are genetically different from one another (in a certain spectrum of genes)
 - Measuring Expected Heterozygosity:
 - Gene-specific index capturing its allelic ("gene variant") frequencies in the population
 - Average over a gene-specific index for large spectrum of genes

Genetic Diversity - Measurement

- Expected Heterozygosity Index of Genetic Diversity:
 - The probability that two individuals, selected at random from a given population, are genetically different from one another (in a certain spectrum of genes)
 - Measuring Expected Heterozygosity:
 - Gene-specific index capturing its allelic ("gene variant") frequencies in the population
 - Average over a gene-specific index for large spectrum of genes

Genetic Diversity – Measurement

- Expected Heterozygosity Index of Genetic Diversity:
 - The probability that two individuals, selected at random from a given population, are genetically different from one another (in a certain spectrum of genes)
 - Measuring Expected Heterozygosity:
 - Gene-specific index capturing its allelic ("gene variant") frequencies in the population
 - Average over a gene-specific index for large spectrum of genes

Genetic Diversity – Measurement

- Expected Heterozygosity Index of Genetic Diversity:
 - The probability that two individuals, selected at random from a given population, are genetically different from one another (in a certain spectrum of genes)
 - Measuring Expected Heterozygosity:
 - Gene-specific index capturing its allelic ("gene variant") frequencies in the population
 - Average over a gene-specific index for large spectrum of genes

• $H_{\lambda} \equiv$ Locus-specific heterozygosity:

• For a gene λ with k_{λ} alleles, where p_i^{λ} is the observed frequency of the *i*-th allele in gene λ :

$$H_{\lambda} = 1 - \sum_{i=1}^{k_{\lambda}} (p_i^{\lambda})^2$$

- $H \equiv$ Expected heterozygosity
 - Averaging over *m* genes:

$$H=rac{1}{m}\sum_{\lambda=1}^m H_\lambda=1-rac{1}{m}\sum_{\lambda=1}^m\sum_{i=1}^{k_\lambda}(
ho_i^\lambda)^2$$

- $H_{\lambda} \equiv$ Locus-specific heterozygosity:
 - For a gene λ with k_{λ} alleles, where p_i^{λ} is the observed frequency of the *i*-th allele in gene λ :

$$H_{\lambda} = 1 - \sum_{i=1}^{k_{\lambda}} (p_i^{\lambda})^2$$

- $H \equiv$ Expected heterozygosity
 - Averaging over *m* genes:

$$H = \frac{1}{m} \sum_{\lambda=1}^{m} H_{\lambda} = 1 - \frac{1}{m} \sum_{\lambda=1}^{m} \sum_{i=1}^{k_{\lambda}} (\rho_i^{\lambda})^2$$

- $H_{\lambda} \equiv$ Locus-specific heterozygosity:
 - For a gene λ with k_{λ} alleles, where p_i^{λ} is the observed frequency of the *i*-th allele in gene λ :

$$H_\lambda = 1 - \sum_{i=1}^{k_\lambda} (p_i^\lambda)^2$$

• $H \equiv$ Expected heterozygosity

• Averaging over *m* genes:

$$H = \frac{1}{m} \sum_{\lambda=1}^{m} H_{\lambda} = 1 - \frac{1}{m} \sum_{\lambda=1}^{m} \sum_{i=1}^{k_{\lambda}} (p_i^{\lambda})^2$$

- $H_{\lambda} \equiv$ Locus-specific heterozygosity:
 - For a gene λ with k_{λ} alleles, where p_i^{λ} is the observed frequency of the *i*-th allele in gene λ :

$$H_{\lambda} = 1 - \sum_{i=1}^{k_{\lambda}} (p_i^{\lambda})^2$$

- $H \equiv$ Expected heterozygosity
 - Averaging over *m* genes:

$$H=rac{1}{m}\sum_{\lambda=1}^m H_\lambda=1-rac{1}{m}\sum_{\lambda=1}^m\sum_{i=1}^{k_\lambda}(p_i^\lambda)^2$$

• Designed to study GD in isolated populations in order to shed light on:

- The scope of human diversity
- The journey of humankind from Africa
- Consists of 53 ethnic groups (52 originally)
 - Isolated geographically
 - Resided in the same location for a prolonged period of time
 - Display insignificant genetic admixture

• Designed to study GD in isolated populations in order to shed light on:

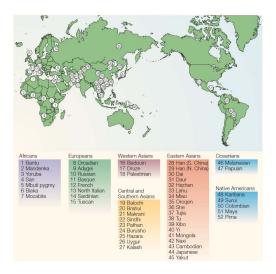
- The scope of human diversity
- The journey of humankind from Africa
- Consists of 53 ethnic groups (52 originally)
 - Isolated geographically
 - Resided in the same location for a prolonged period of time
 - Display insignificant genetic admixture

• Designed to study GD in isolated populations in order to shed light on:

- The scope of human diversity
- The journey of humankind from Africa
- Consists of 53 ethnic groups (52 originally)
 - Isolated geographically
 - Resided in the same location for a prolonged period of time
 - Display insignificant genetic admixture

- Designed to study GD in isolated populations in order to shed light on:
 - The scope of human diversity
 - The journey of humankind from Africa
- Consists of 53 ethnic groups (52 originally)
 - Isolated geographically
 - Resided in the same location for a prolonged period of time
 - Display insignificant genetic admixture

- Designed to study GD in isolated populations in order to shed light on:
 - The scope of human diversity
 - The journey of humankind from Africa
- Consists of 53 ethnic groups (52 originally)
 - Isolated geographically
 - Resided in the same location for a prolonged period of time
 - Display insignificant genetic admixture


Data: Human Genome Diversity Project (HGDP)

- Designed to study GD in isolated populations in order to shed light on:
 - The scope of human diversity
 - The journey of humankind from Africa
- Consists of 53 ethnic groups (52 originally)
 - Isolated geographically
 - Resided in the same location for a prolonged period of time
 - Display insignificant genetic admixture

Data: Human Genome Diversity Project (HGDP)

- Designed to study GD in isolated populations in order to shed light on:
 - The scope of human diversity
 - The journey of humankind from Africa
- Consists of 53 ethnic groups (52 originally)
 - Isolated geographically
 - Resided in the same location for a prolonged period of time
 - Display insignificant genetic admixture

HGDP Ethnic Groups


The Spatial Distribution of the HGDP Ethnic Groups

+ Marks the location of an HGDP ethnic group.

o Marks an approximate critical juncture in the journey of humankind from Africa.

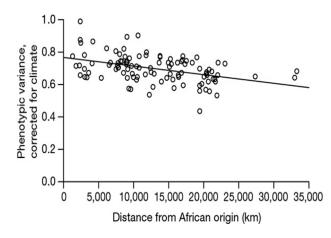
Migratory Distance from Africa and Genetic Diversity

- Expected heterozygosity calculated for the 53 ethnic groups in the HGDP using allelic frequencies for 783 microsatellite loci
- Advantage of using microsatellites a class of non-protein-coding regions of the human genome:
 - Selectively neutral
 - Ensures that the observed cross-sectional variation in diversity is not due to differential forces of natural selection
 - Mutationally active
 - Facilitates the construction of "population trees" and thus the genealogical and migratory histories of populations
 - Expected heterozygosity in microsatellites is positively correlated with phenotypic and cultural diversity
 - Permitting an exploration of the effect of GD on economic outcomes

- Expected heterozygosity calculated for the 53 ethnic groups in the HGDP using allelic frequencies for 783 microsatellite loci
- Advantage of using microsatellites a class of non-protein-coding regions of the human genome:
 - Selectively neutral
 - Ensures that the observed cross-sectional variation in diversity is not due to differential forces of natural selection
 - Mutationally active
 - Facilitates the construction of "population trees" and thus the genealogical and migratory histories of populations
 - Expected heterozygosity in microsatellites is positively correlated with phenotypic and cultural diversity
 - Permitting an exploration of the effect of GD on economic outcomes

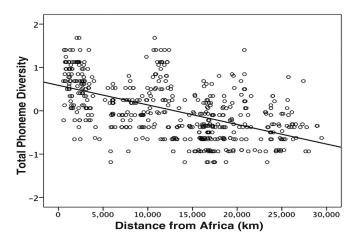
- Expected heterozygosity calculated for the 53 ethnic groups in the HGDP using allelic frequencies for 783 microsatellite loci
- Advantage of using microsatellites a class of non-protein-coding regions of the human genome:
 - Selectively neutral
 - Ensures that the observed cross-sectional variation in diversity is not due to differential forces of natural selection
 - Mutationally active
 - Facilitates the construction of "population trees" and thus the genealogical and migratory histories of populations
 - Expected heterozygosity in microsatellites is positively correlated with phenotypic and cultural diversity
 - Permitting an exploration of the effect of GD on economic outcomes

- Expected heterozygosity calculated for the 53 ethnic groups in the HGDP using allelic frequencies for 783 microsatellite loci
- Advantage of using microsatellites a class of non-protein-coding regions of the human genome:
 - Selectively neutral
 - Ensures that the observed cross-sectional variation in diversity is not due to differential forces of natural selection
 - Mutationally active
 - Facilitates the construction of "population trees" and thus the genealogical and migratory histories of populations
 - Expected heterozygosity in microsatellites is positively correlated with phenotypic and cultural diversity
 - Permitting an exploration of the effect of GD on economic outcomes

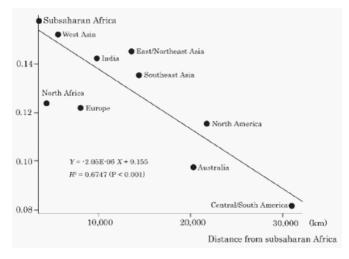

- Expected heterozygosity calculated for the 53 ethnic groups in the HGDP using allelic frequencies for 783 microsatellite loci
- Advantage of using microsatellites a class of non-protein-coding regions of the human genome:
 - Selectively neutral
 - Ensures that the observed cross-sectional variation in diversity is not due to differential forces of natural selection
 - Mutationally active
 - Facilitates the construction of "population trees" and thus the genealogical and migratory histories of populations
 - Expected heterozygosity in microsatellites is positively correlated with phenotypic and cultural diversity
 - Permitting an exploration of the effect of GD on economic outcomes

- Expected heterozygosity calculated for the 53 ethnic groups in the HGDP using allelic frequencies for 783 microsatellite loci
- Advantage of using microsatellites a class of non-protein-coding regions of the human genome:
 - Selectively neutral
 - Ensures that the observed cross-sectional variation in diversity is not due to differential forces of natural selection
 - Mutationally active
 - Facilitates the construction of "population trees" and thus the genealogical and migratory histories of populations
 - Expected heterozygosity in microsatellites is positively correlated with phenotypic and cultural diversity
 - Permitting an exploration of the effect of GD on economic outcomes

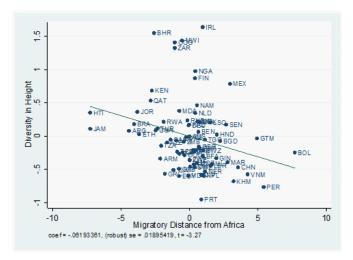
- Expected heterozygosity calculated for the 53 ethnic groups in the HGDP using allelic frequencies for 783 microsatellite loci
- Advantage of using microsatellites a class of non-protein-coding regions of the human genome:
 - Selectively neutral
 - Ensures that the observed cross-sectional variation in diversity is not due to differential forces of natural selection
 - Mutationally active
 - Facilitates the construction of "population trees" and thus the genealogical and migratory histories of populations
 - Expected heterozygosity in microsatellites is positively correlated with phenotypic and cultural diversity
 - Permitting an exploration of the effect of GD on economic outcomes


- Expected heterozygosity calculated for the 53 ethnic groups in the HGDP using allelic frequencies for 783 microsatellite loci
- Advantage of using microsatellites a class of non-protein-coding regions of the human genome:
 - Selectively neutral
 - Ensures that the observed cross-sectional variation in diversity is not due to differential forces of natural selection
 - Mutationally active
 - Facilitates the construction of "population trees" and thus the genealogical and migratory histories of populations
 - Expected heterozygosity in microsatellites is positively correlated with phenotypic and cultural diversity
 - Permitting an exploration of the effect of GD on economic outcomes

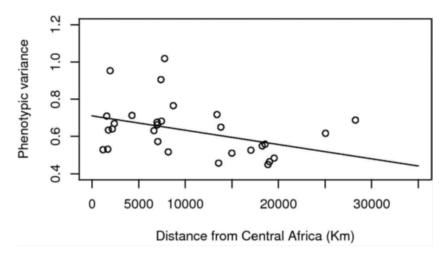
Distance from Africa and Craniometric Diversity


Source: Manica et al. (Nature 2007)

Distance from Africa and Linguistic Diversity


Source: Atkinson (Science 2011)

Distance from Africa and Dental Diversity


Source: Hanihara (American Journal of Physical Anthropology, 2008)

Distance from Africa and Height Diversity

Source: Galor and Klemp (2014)

Distance from Africa and Pelvic Bone Diversity

Source: Betti et al. (Human Biology, 2012)

- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:
 - The negative effect on the cohesiveness of society
 The positive effect on innovations

- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:

The negative effect on the cohesiveness of societyThe positive effect on innovations

- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:
 - The negative effect on the cohesiveness of societyThe positive effect on innovations

- Existence of an optimal level of genetic diversity (for each stage of development)
 - Balances between:
 - The negative effect on the cohesiveness of society
 - The positive effect on innovations

• Genetic diversity increases the incidence of:

- Mistrust
- Civil conflicts
- ullet \Longrightarrow Inefficiency in the operation of the economy relative to its PPF

• Genetic diversity increases the incidence of:

Mistrust

- Civil conflicts
- ullet \Longrightarrow Inefficiency in the operation of the economy relative to its PPF

- Genetic diversity increases the incidence of:
 - Mistrust
 - Civil conflicts
 - $\bullet \implies$ Inefficiency in the operation of the economy relative to its PPF

- Genetic diversity increases the incidence of:
 - Mistrust
 - Civil conflicts
 - $\bullet \implies$ Inefficiency in the operation of the economy relative to its PPF

- Increases the likelihood for the existence of traits that are complementary to the adoption of newly technologies
- Generates complementary in the production process
- Increases the upper tail of the ability distribution that matters for innovations
- \implies Diversity fosters innovations & expands the production possibilities

- Increases the likelihood for the existence of traits that are complementary to the adoption of newly technologies
- Generates complementary in the production process
- Increases the upper tail of the ability distribution that matters for innovations
- \implies Diversity fosters innovations & expands the production possibilities

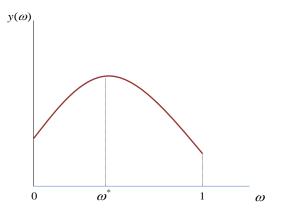
- Increases the likelihood for the existence of traits that are complementary to the adoption of newly technologies
- Generates complementary in the production process
- Increases the upper tail of the ability distribution that matters for innovations
- \implies Diversity fosters innovations & expands the production possibilities

- Increases the likelihood for the existence of traits that are complementary to the adoption of newly technologies
- Generates complementary in the production process
- Increases the upper tail of the ability distribution that matters for innovations
- \implies Diversity fosters innovations & expands the production possibilities

- Increases the likelihood for the existence of traits that are complementary to the adoption of newly technologies
- Generates complementary in the production process
- Increases the upper tail of the ability distribution that matters for innovations
- $\bullet \implies$ Diversity fosters innovations & expands the production possibilities

Positive but diminishing effects of:

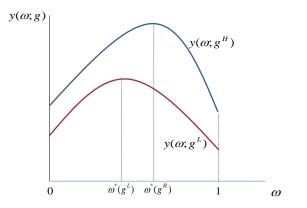
- Genetic diversity on innovations
- Homogeneity on cohesiveness
 - A hump-shaped relationship between diversity and development
 - \Rightarrow Optimal level of genetic diversity (for each stage of development)


- Positive but diminishing effects of:
 - Genetic diversity on innovations
 - Homogeneity on cohesiveness
 - A hump-shaped relationship between diversity and development
 - \Rightarrow Optimal level of genetic diversity (for each stage of development)

- Positive but diminishing effects of:
 - Genetic diversity on innovations
 - Homogeneity on cohesiveness
 - $\bullet \implies \mathsf{A}$ hump-shaped relationship between diversity and development
 - \implies Optimal level of genetic diversity (for each stage of development)

- Positive but diminishing effects of:
 - Genetic diversity on innovations
 - Homogeneity on cohesiveness
 - $\bullet \implies \mathsf{A}$ hump-shaped relationship between diversity and development
 - \implies Optimal level of genetic diversity (for each stage of development)

- Positive but diminishing effects of:
 - Genetic diversity on innovations
 - Homogeneity on cohesiveness
 - $\bullet \implies \mathsf{A}$ hump-shaped relationship between diversity and development
 - \implies Optimal level of genetic diversity (for each stage of development)


The Optimal Level of Genetic Diversity

Ömer Özak

Growth & Comparative Development 26 / 91

The Rise in the Optimal Diversity - Faster Technological Progress

Cross-country Analysis

- Pre-colonial era:
 - Observed genetic diversity (21 countries)
 - Projected diversity (145 countries)
- Contemporary analysis:
 - Projected diversity (145 countries)

• Across ethnic groups

- Observed genetic diversity (232 ethnic groups)
- Projected diversity (1331 ethnic groups)

Cross-country Analysis

- Pre-colonial era:
 - Observed genetic diversity (21 countries)
 - Projected diversity (145 countries)
- Contemporary analysis:
 - Projected diversity (145 countries)

• Across ethnic groups

- Observed genetic diversity (232 ethnic groups)
- Projected diversity (1331 ethnic groups)

- Cross-country Analysis
 - Pre-colonial era:
 - Observed genetic diversity (21 countries)
 - Projected diversity (145 countries)
 - Contemporary analysis:
 - Projected diversity (145 countries)
- Across ethnic groups
 - Observed genetic diversity (232 ethnic groups)
 - Projected diversity (1331 ethnic groups)

- Cross-country Analysis
 - Pre-colonial era:
 - Observed genetic diversity (21 countries)
 - Projected diversity (145 countries)
 - Contemporary analysis:
 - Projected diversity (145 countries)
- Across ethnic groups
 - Observed genetic diversity (232 ethnic groups)
 - Projected diversity (1331 ethnic groups)

- Cross-country Analysis
 - Pre-colonial era:
 - Observed genetic diversity (21 countries)
 - Projected diversity (145 countries)
 - Contemporary analysis:
 - Projected diversity (145 countries)
- Across ethnic groups
 - Observed genetic diversity (232 ethnic groups)
 - Projected diversity (1331 ethnic groups)

- Cross-country Analysis
 - Pre-colonial era:
 - Observed genetic diversity (21 countries)
 - Projected diversity (145 countries)
 - Contemporary analysis:
 - Projected diversity (145 countries)
- Across ethnic groups
 - Observed genetic diversity (232 ethnic groups)
 - Projected diversity (1331 ethnic groups)

- Cross-country Analysis
 - Pre-colonial era:
 - Observed genetic diversity (21 countries)
 - Projected diversity (145 countries)
 - Contemporary analysis:
 - Projected diversity (145 countries)

Across ethnic groups

- Observed genetic diversity (232 ethnic groups)
- Projected diversity (1331 ethnic groups)

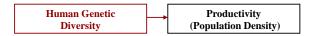
- Cross-country Analysis
 - Pre-colonial era:
 - Observed genetic diversity (21 countries)
 - Projected diversity (145 countries)
 - Contemporary analysis:
 - Projected diversity (145 countries)
- Across ethnic groups
 - Observed genetic diversity (232 ethnic groups)
 - Projected diversity (1331 ethnic groups)

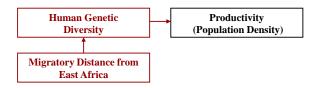
- Cross-country Analysis
 - Pre-colonial era:
 - Observed genetic diversity (21 countries)
 - Projected diversity (145 countries)
 - Contemporary analysis:
 - Projected diversity (145 countries)
- Across ethnic groups
 - Observed genetic diversity (232 ethnic groups)
 - Projected diversity (1331 ethnic groups)

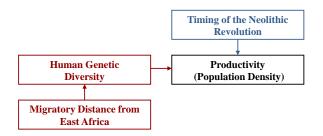
• The effect of GD on productivity in the years 1-1500 CE:

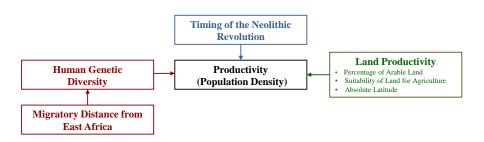
- Productivity is captured by population density (Malthusian Epoch)
- Disentangle effects of:
 - Genetic Diversity
 - Geographic Factors: Land productivity, Absolute latitude
 - Time elapsed since the Neolithic Revolution

- The effect of GD on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)
 - Disentangle effects of:
 - Genetic Diversity
 - Geographic Factors: Land productivity, Absolute latitude
 - Time elapsed since the Neolithic Revolution

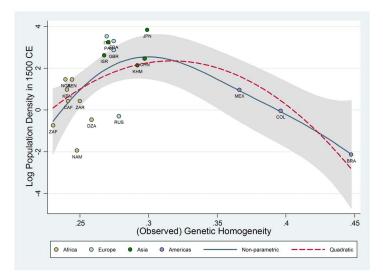

- The effect of GD on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)
 - Disentangle effects of:
 - Genetic Diversity
 - Geographic Factors: Land productivity, Absolute latitude
 - Time elapsed since the Neolithic Revolution


- The effect of GD on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)
 - Disentangle effects of:
 - Genetic Diversity
 - Geographic Factors: Land productivity, Absolute latitude
 - Time elapsed since the Neolithic Revolution


- The effect of GD on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)
 - Disentangle effects of:
 - Genetic Diversity
 - Geographic Factors: Land productivity, Absolute latitude
 - Time elapsed since the Neolithic Revolution


- The effect of GD on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)
 - Disentangle effects of:
 - Genetic Diversity
 - Geographic Factors: Land productivity, Absolute latitude
 - Time elapsed since the Neolithic Revolution

Productivity (Population Density)



Observed Diversity and Development in 1500: Unconditional Relationship

• Testing the hypothesis using observed genetic diversity from the HGDP

- 21-country sample
- Empirical specification

- $P_{it} \equiv$ population density in country *i* in year t
- $G_i \equiv actual$ genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

• Testing the hypothesis using observed genetic diversity from the HGDP

- 21-country sample
- Empirical specification

- $P_{it} \equiv$ population density in country *i* in year t
- $G_i \equiv actual$ genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using observed genetic diversity from the HGDP
 - 21-country sample
 - Empirical specification

- $P_{it} \equiv$ population density in country *i* in year t
- $G_i \equiv actual$ genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using observed genetic diversity from the HGDP
 - 21-country sample
 - Empirical specification

- $P_{it} \equiv$ population density in country *i* in year t
- $G_i \equiv actual$ genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using observed genetic diversity from the HGDP
 - 21-country sample
 - Empirical specification

- $P_{it} \equiv$ population density in country *i* in year t
- $G_i \equiv actual$ genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using observed genetic diversity from the HGDP
 - 21-country sample
 - Empirical specification

- $P_{it} \equiv$ population density in country *i* in year t
- $G_i \equiv actual$ genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using observed genetic diversity from the HGDP
 - 21-country sample
 - Empirical specification

- $P_{it} \equiv$ population density in country *i* in year t
- $G_i \equiv actual$ genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using observed genetic diversity from the HGDP
 - 21-country sample
 - Empirical specification

- $P_{it} \equiv$ population density in country *i* in year t
- $G_i \equiv actual$ genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using observed genetic diversity from the HGDP
 - 21-country sample
 - Empirical specification

- $P_{it} \equiv$ population density in country *i* in year t
- $G_i \equiv actual$ genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

Actual Diversity and Comparative Development in 1500

	(1)	(2)	(3)	(4)	(5)	
	Dependent Variable: Log Population Density in 1500					
Genetic Diversity	413.51***			225.44***	203.82*	
	(97.32)			(73.78)	(97.64)	
Genetic Diversity Sqr.	-302.65***			-161.16**	-145.72	
	(73.34)			(56.16)	(80.41)	
Log Years since NR		2.40***		1.21***	1.14	
		(0.27)		(0.37)	(0.66)	
Log % of Arable Land			0.73**	0.52***	0.55*	
			(0.28)	(0.17)	(0.26)	
Log Absolute Latitude			0.15	-0.16	-0.13	
			(0.18)	(0.13)	(0.17)	
Log Agri. Suitability			0.73*	0.57*	0.59	
			(0.38)	(0.29)	(0.33)	
Optimal Diversity	0.683			0.699	0.699	
	(0.008)			(0.015)	(0.055)	
Continent Dummies	No	No	No	No	Yes	
Observations	21	21	21	21	21	
R-squared	0.42	0.54	0.57	0.89	0.90	

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Migratory Distance from East Africa vs. Genetic Diversity

	(1)	(2)	(3)	(4)	(5)	
	Dependent Variable: Log Population Density in 1500					
Genetic Diversity	417.003*** (90.909)			300.978*** (76.371)	361.421** (121.429)	
Genetic Diversity Sqr.	-306.218*** (68.308)			-241.755*** (61.099)	-268.515*** (87.342)	
Migratory Distance		0.463*** (0.142)		-0.003 (0.178)		
Migratory Distance Sqr.		-0.021*** (0.006)		-0.010 (0.009)		
Mobility Index			0.353** (0.127)		0.051 (0.154)	
Mobility Index Sqr.			-0.012*** (0.004)		-0.003 (0.006)	
Observations	18	18	18	18	18	
R-squared	0.43	0.30	0.30	0.47	0.43	
P-value for:						
Joint Sig. of Diversity Joint Sig. of Distance				0.006 0.320	0.027	
Joint Sig. of Mobility a					0.905	

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

• Testing the hypothesis using projected genetic diversity

- 145-country sample
- Empirical specification

- $P_{it} \equiv$ population density of country *i* in year t
- $\hat{G}_i \equiv$ genetic diversity of country *i* projected by migratory distance
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_j \equiv$ vector of continental dummies for country μ
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using projected genetic diversity
 - 145-country sample
- Empirical specification

- $P_{it} \equiv$ population density of country *i* in year t
- $\hat{G}_i \equiv$ genetic diversity of country *i* projected by migratory distance
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- ullet $\Delta_j{\equiv}$ vector of continental dummies for country μ
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using projected genetic diversity
 - 145-country sample
- Empirical specification

 $\ln P_{it} = \beta_{0t} + \beta_{1t}\hat{G}_i + \beta_{2t}\hat{G}_i^2 + \beta_{3t}\ln T_i + \beta'_{4t}\ln X_i + \beta'_{5t}\ln\Delta_i + \varepsilon_{it}$

- $P_{it} \equiv$ population density of country *i* in year t
- $\hat{G}_i \equiv$ genetic diversity of country *i* projected by migratory distance
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using projected genetic diversity
 - 145-country sample
- Empirical specification

 $\ln P_{it} = \beta_{0t} + \beta_{1t}\hat{G}_i + \beta_{2t}\hat{G}_i^2 + \beta_{3t}\ln T_i + \beta'_{4t}\ln X_i + \beta'_{5t}\ln\Delta_i + \varepsilon_{it}$

- $P_{it} \equiv$ population density of country *i* in year t
- $\hat{G}_i \equiv$ genetic diversity of country *i* projected by migratory distance
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using projected genetic diversity
 - 145-country sample
- Empirical specification

$$\ln P_{it} = \beta_{0t} + \beta_{1t}\hat{G}_i + \beta_{2t}\hat{G}_i^2 + \beta_{3t}\ln T_i + \beta'_{4t}\ln X_i + \beta'_{5t}\ln \Delta_i + \varepsilon_{it}$$

- $P_{it} \equiv$ population density of country *i* in year t
- $\hat{G}_i \equiv$ genetic diversity of country *i* projected by migratory distance
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using projected genetic diversity
 - 145-country sample
- Empirical specification

$$\ln P_{it} = \beta_{0t} + \beta_{1t}\hat{G}_i + \beta_{2t}\hat{G}_i^2 + \beta_{3t}\ln T_i + \beta'_{4t}\ln X_i + \beta'_{5t}\ln \Delta_i + \varepsilon_{it}$$

- $P_{it} \equiv$ population density of country *i* in year t
- $\hat{G}_i \equiv$ genetic diversity of country *i* projected by migratory distance
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

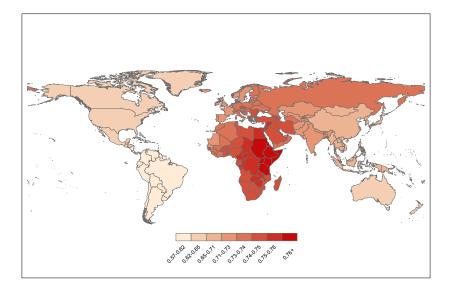
- Testing the hypothesis using projected genetic diversity
 - 145-country sample
- Empirical specification

$$\ln P_{it} = \beta_{0t} + \beta_{1t}\hat{G}_i + \beta_{2t}\hat{G}_i^2 + \beta_{3t}\ln T_i + \beta'_{4t}\ln X_i + \beta'_{5t}\ln \Delta_i + \varepsilon_{it}$$

- $P_{it} \equiv$ population density of country *i* in year t
- $\hat{G}_i \equiv$ genetic diversity of country *i* projected by migratory distance
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using projected genetic diversity
 - 145-country sample
- Empirical specification

$$\ln P_{it} = \beta_{0t} + \beta_{1t}\hat{G}_i + \beta_{2t}\hat{G}_i^2 + \beta_{3t}\ln T_i + \beta'_{4t}\ln X_i + \beta'_{5t}\ln \Delta_i + \varepsilon_{it}$$


- $P_{it} \equiv$ population density of country *i* in year t
- $\hat{G}_i \equiv$ genetic diversity of country *i* projected by migratory distance
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

- Testing the hypothesis using projected genetic diversity
 - 145-country sample
- Empirical specification

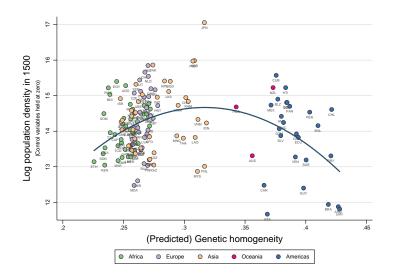
$$\ln P_{it} = \beta_{0t} + \beta_{1t}\hat{G}_i + \beta_{2t}\hat{G}_i^2 + \beta_{3t}\ln T_i + \beta'_{4t}\ln X_i + \beta'_{5t}\ln \Delta_i + \varepsilon_{it}$$

- $P_{it} \equiv$ population density of country *i* in year t
- $\hat{G}_i \equiv$ genetic diversity of country *i* projected by migratory distance
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Delta_i \equiv$ vector of continental dummies for country *i*
- $\varepsilon_{it} \equiv$ a country-year specific error term for country *i*

Projected Genetic Diversity across Countries in the Pre-Colonial Era

Ömer Özak

Genetic Diversity and Development


Growth & Comparative Development 40 / 91

Predicted Diversity and Comparative Development in 1500

	(1)	(2)	(3)	(4)	(5)	(6)	
	Dependent Variable is Log Population Density in 1500						
Predicted Diversity	250.99***		213.54***	203.02***	195.42***	199.73**	
	(68.26)		(63.50)	(61.05)	(56.09)	(80.51)	
Predicted Diversity Sqr.	-177.40***		-152.11***	-141.98***	-137.98***	-146.17***	
	(50.22)		(46.65)	(44.83)	(40.84)	(56.26)	
Log Years since NR		1.29***	1.05***		1.16***	1.24***	
-		(0.18)	(0.19)		(0.15)	(0.24)	
Log % of Arable Land				0.52***	0.40***	0.39***	
				(0.12)	(0.09)	(0.10)	
Log Absolute Latitude				-0.17*	-0.34***	-0.42***	
-				(0.09)	(0.09)	(0.12)	
Log Agri. Suitability				0.19	0.31***	0.26***	
				(0.12)	(0.10)	(0.10)	
Optimal Diversity	0.707		0.702	0.715	0.708	0.683	
. ,	(0.021)		(0.025)	(0.110)	(0.051)	(0.110)	
Continent Dummies	No	No	No	No	No	Yes	
Observations	145	145	145	145	145	145	
R-squared	0.22	0.26	0.38	0.50	0.67	0.69	

Bootstrap standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Predicted Diversity and Comparative Development in 1500

• Optimal GD in 1500 = 0.6832 pprox GD in Japan = 0.6835

- Increasing GD of the most homogeneous population in South America by:
 - 0.11 \implies 6-fold increase in population density in 1500
 - 0.01 \implies 44% increase in population density in 1500
- Decreasing GD of the most heterogeneous population in East Africa by:
 - 0.09 \implies 3-fold increase in population density in 1500
 - ullet 0.01 \implies 18% increase in population density in 1500
- 0.01 change from the optimal level of GD
 - \implies 1.4% decrease in population density in 1500

- Optimal GD in $1500 = 0.6832 \approx$ GD in Japan = 0.6835
- Increasing GD of the most homogeneous population in South America by:
 - 0.11 \implies 6-fold increase in population density in 1500
 - 0.01 \implies 44% increase in population density in 1500
- Decreasing GD of the most heterogeneous population in East Africa by:
 - ullet 0.09 \implies 3-fold increase in population density in 1500
 - 0.01 \implies 18% increase in population density in 1500
- 0.01 change from the optimal level of GD
 - \implies 1.4% decrease in population density in 1500

- Optimal GD in $1500 = 0.6832 \approx$ GD in Japan = 0.6835
- Increasing GD of the most homogeneous population in South America by:
 - $\bullet \ 0.11 \implies \ {\rm 6-fold \ increase \ in \ population \ density \ in \ 1500}$
 - 0.01 \implies 44% increase in population density in 1500
- Decreasing GD of the most heterogeneous population in East Africa by:
 - ullet 0.09 \implies 3-fold increase in population density in 1500
 - ho 0.01 \implies 18% increase in population density in 1500
- 0.01 change from the optimal level of GD
 - \implies 1.4% decrease in population density in 1500

- Optimal GD in $1500 = 0.6832 \approx$ GD in Japan = 0.6835
- Increasing GD of the most homogeneous population in South America by:
 - 0.11 \implies 6-fold increase in population density in 1500
 - 0.01 \implies 44% increase in population density in 1500
- Decreasing GD of the most heterogeneous population in East Africa by:

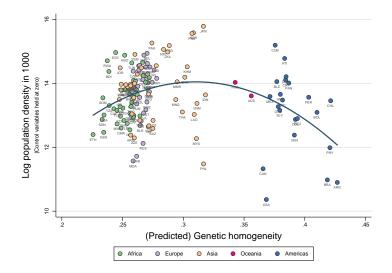
ullet 0.09 \implies 3-fold increase in population density in 1500

- ho 0.01 \implies 18% increase in population density in 1500
- 0.01 change from the optimal level of GD
 - \implies 1.4% decrease in population density in 1500

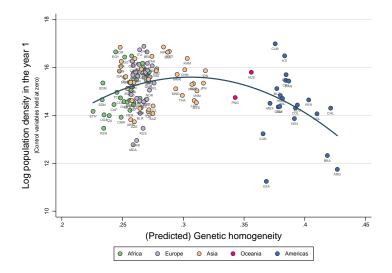
- Optimal GD in $1500 = 0.6832 \approx$ GD in Japan = 0.6835
- Increasing GD of the most homogeneous population in South America by:
 - 0.11 \implies 6-fold increase in population density in 1500
 - 0.01 \implies 44% increase in population density in 1500

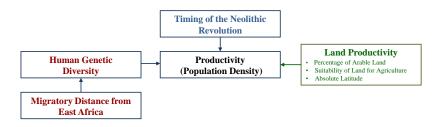
• Decreasing GD of the most heterogeneous population in East Africa by:

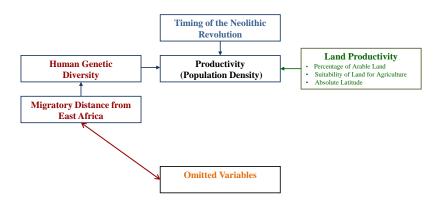
- 0.09 \implies 3-fold increase in population density in 1500
- 0.01 \implies 18% increase in population density in 1500
- 0.01 change from the optimal level of GD
 - \implies 1.4% decrease in population density in 1500

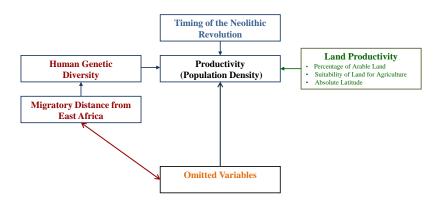

- Optimal GD in $1500 = 0.6832 \approx$ GD in Japan = 0.6835
- Increasing GD of the most homogeneous population in South America by:
 - 0.11 \implies 6-fold increase in population density in 1500
 - 0.01 \implies 44% increase in population density in 1500
- Decreasing GD of the most heterogeneous population in East Africa by:
 - 0.09 ⇒ 3-fold increase in population density in 1500
 0.01 ⇒ 18% increase in population density in 1500
- 0.01 change from the optimal level of GD
 - \implies 1.4% decrease in population density in 1500

- Optimal GD in $1500 = 0.6832 \approx$ GD in Japan = 0.6835
- Increasing GD of the most homogeneous population in South America by:
 - 0.11 \implies 6-fold increase in population density in 1500
 - 0.01 \implies 44% increase in population density in 1500
- Decreasing GD of the most heterogeneous population in East Africa by:
 - 0.09 \implies 3-fold increase in population density in 1500
 - 0.01 \implies 18% increase in population density in 1500
- 0.01 change from the optimal level of GD
 - \implies 1.4% decrease in population density in 1500

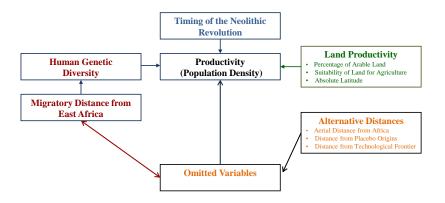

- Optimal GD in $1500 = 0.6832 \approx$ GD in Japan = 0.6835
- Increasing GD of the most homogeneous population in South America by:
 - 0.11 \implies 6-fold increase in population density in 1500
 - 0.01 \implies 44% increase in population density in 1500
- Decreasing GD of the most heterogeneous population in East Africa by:
 - 0.09 \implies 3-fold increase in population density in 1500
 - 0.01 \implies 18% increase in population density in 1500
- 0.01 change from the optimal level of GD
 - \implies 1.4% decrease in population density in 1500


- Optimal GD in $1500 = 0.6832 \approx$ GD in Japan = 0.6835
- Increasing GD of the most homogeneous population in South America by:
 - 0.11 \implies 6-fold increase in population density in 1500
 - 0.01 \implies 44% increase in population density in 1500
- Decreasing GD of the most heterogeneous population in East Africa by:
 - 0.09 \implies 3-fold increase in population density in 1500
 - 0.01 \implies 18% increase in population density in 1500
- 0.01 change from the optimal level of GD
 - \implies 1.4% decrease in population density in 1500


Predicted Diversity and Comparative Development in 1000 CE



Predicted Diversity and Comparative Development in 1 CE



The Role of Omitted Variables - Alternative Distances

Robustness: Distances from Placebo Origins

	(1)	(2)	(3)	(4)	(5)	
	Dependent Variable: Log Population Density in 1500					
Distance calculated from:	Addis Ababa	Addis Ababa	London	Tokyo	Mexico City	
Migratory Distance	0.138** (0.061)		-0.040 (0.063)	0.052 (0.145)	-0.063 (0.099)	
Migratory Distance Sqr.	-0.008*** (0.002)		-0.002	-0.006	0.005	
Aerial Distance		-0.008 (0.106)	. ,	. ,	. /	
Aerial Distance Sqr.		-0.005 (0.006)				
Log Years since NR	1.160*** (0.144)	1.158*** (0.138)	1.003*** (0.164)	1.047*** (0.225)	1.619*** (0.277)	
Log % of Arable Land	0.401*** (0.091)	0.488*** (0.102)	0.357*** (0.092)	0.532*** (0.089)	0.493*** (0.094)	
Log Absolute Latitude	-0.342*** (0.091)	-0.263*** (0.097)	-0.358*** (0.112)	-0.334*** (0.099)	-0.239*** (0.083)	
Log Agri. Suitability	0.305*** (0.091)	0.254** (0.102)	0.344*** (0.092)	0.178** (0.080)	0.261*** (0.092)	
Observations R-squared	145 0.67	145 0.59	145 0.67	145 0.59	145 0.63	

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Regional Technological Frontiers

City & Modern Location	Continent	Sociopolitical Entity	Period
Cairo, Egypt	Africa	Mamluk Sultanate	1500 CE
Fez. Morocco	Africa	Marinid Kingdom of Fez	1500 CE
London, UK	Europe	Tudor Dynasty	1500 CE
Paris, France	Europe	Valois-Orléans Dynasty	1500 CE
Constantinople, Turkey	Asia	Ottoman Empire	1500 CE
Peking, China	Asia	Ming Dynasty	1500 CE
Tenochtitlan. Mexico	Americas	Aztec Civilization	1500 CE
Cuzco. Peru	Americas	Inca Civilization	1500 CE
	Americas		1500 CE
Cairo, Egypt	Africa	Fatimid Caliphate	1000 CE
Kairwan, Tunisia	Africa	Berber Zirite Dynasty	1000 CE
Constantinople, Turkey	Europe	Byzantine Empire	1000 CE
Cordoba, Spain	Europe	Caliphate of Cordoba	1000 CE
Baghdad, Iraq	Asia	Abbasid Caliphate	1000 CE
Kaifeng, China	Asia	Song Dynasty	1000 CE 1000 CE
Tollan. Mexico	Americas	Classic Maya Civilization	1000 CE
Huari. Peru	Americas	Huari Culture	1000 CE
	Americas		1000 CL
Alexandria, Egypt	Africa	Roman Empire	1 CE
Carthage, Tunisia	Africa	Roman Empire	1 CE
Athens, Greece	Europe	Roman Empire	1 CE
Rome, Italy	Europe	Roman Empire	1 CE
Luoyang, China	Asia	Han Dynasty	1 CE
Seleucia, Iraq	Asia	Seleucid Dynasty	1 CE
Teotihuacán. Mexico	Americas	Pre-classic Maya Civilization	1 CE
Cahuachi. Peru	Americas	Nazca Culture	1 CE
Canuacin, i elu	Americas	Nazca Culture	I CL

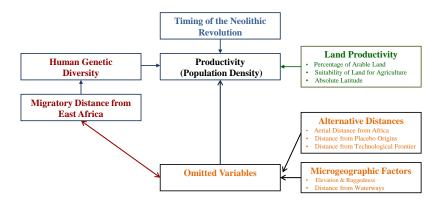
Ömer Özak

Genetic Diversity and Development

Growth & Comparative Development 51 / 91

Robustness to Distance from Regional Technological Frontiers

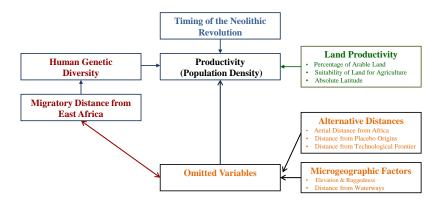
	(1)	(2)	(3)
	Log Population Density 1500 CE	Log Population Density 1000 CE	Log Population Density 1 CE
Predicted Diversity	156.74** (77.98)	183.77** (91.20)	215.86** (106.50)
Predicted Diversity Sqr.	-114.63** (54.67)	-134.61** (63.65)	-157.72** (74.82)
Log Years since NR	Yes	Yes	Yes
Land Prod. Controls	Yes	Yes	Yes
Log Distance to Frontier in 1500 CE	-0.19*** (0.07)		
Log Distance to Frontier in 1000 CE		-0.23** (0.11)	
Log Distance to Frontier in 1 CE		, , ,	-0.30*** (0.10)
Optimal Diversity	0.684 (0.169)	0.683 (0.218)	0.684 (0.266)
Continent Dummies	Yes	Yes	Yes
Observations	145	140	126
R-squared	0.72	0.64	0.66


Bootstrap standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

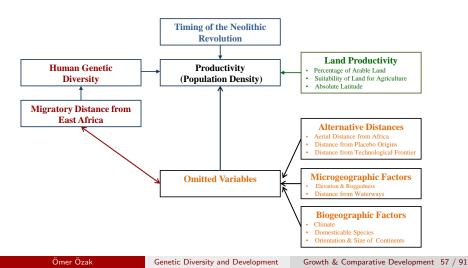
Ömer Özak

Genetic Diversity and Development

The Role of Omitted Variables – Microgeographic Factors


Robustness to Microgeographic Factors

	(1)	(2)	(3)	(4)	(5)	
	Dependent Variable: Log Population Density in 1500					
Predicted Diversity	159.92*** (56.00)	153.20*** (53.39)	157.07** (78.82)	150.02*** (49.36)	157.06** (68.61)	
Predicted Diversity Sqr.	-110.39*** (41.08)	-105.33*** (39.11)	-112.78** (55.48)	-102.76*** (36.23)	-114.99** (48.26)	
Log Years since NR	Yes	Yes	Yes	Yes	Yes	
Land Prod. Controls	Yes	Yes	Yes	Yes	Yes	
Mean Elevation	-0.48** (0.23)			0.51* (0.27)	0.50* (0.27)	
Roughness	5.15*** (1.77)			3.09* (1.74)	4.08** (1.84)	
Roughness Sqr.	-7.05** (3.11)			-7.05** (2.96)	-7.63*** (2.91)	
Distance to Nearest Waterway		-0.49*** (0.18)	-0.44** (0.18)	-0.47** (0.18)	-0.39** (0.18)	
% Land within 100 km of Waterway		0.70** (0.28)	0.73** (0.31)	1.11*** (0.29)	1.18*** (0.29)	
Optimal Diversity	0.724 (0.201)	0.727 (0.190)	0.696 (0.187)	0.730 (0.229)	0.683 (0.095)	
Continent Dummies	No	No	Yes	No	Yes	
Observations	145	145	145	145	145	
R-squared	0.69	0.74	0.75	0.76	0.78	


Bootstrap standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Ömer Özak

Genetic Diversity and Development

The Role of Omitted Variables – Biogeography

Robustness to Biogeography

	(1)	(2)	(3)	(4)	(5)	
	Dependent Variable is Log Population Density in 1500					
Predicted Diversity	216.85*** (62.06)	252.08*** (70.81)	174.41*** (62.75)	212.12*** (72.13)	274.92*** (72.12)	
Predicted Diversity Sqr.	-154.75*** (45.19)	-180.65*** (51.89)	-125.14*** (45.72)	-151.58*** (52.79)	-197.12*** (52.40)	
Log Years since NR	1.30*** (0.16)				1.16*** (0.31)	
Land Prod. Controls	Yes	Yes	Yes	Yes	Yes	
Climate		0.62*** (0.14)		0.42 (0.27)	0.37* (0.22)	
Orientation of Axis		0.28 (0.33)		0.04 (0.30)	-0.17 (0.27)	
Size of Continent		-0.01 (0.02)		-0.01 (0.01)	-0.01 (0.01)	
Domesticable Plants			0.02 (0.02)	-0.01 (0.02)	0.00 (0.02)	
Domesticable Animals			0.15** (0.06)	0.12 (0.07)	-0.01 (0.07)	
Optimal Diversity	0.701 (0.123)	0.698 (0.016)	0.697 (0.159)	0.700 (0.045)	0.697 (0.041)	
Observations	96	96	96	96	96	
R-squared	0.74	0.70	0.70	0.72	0.78	

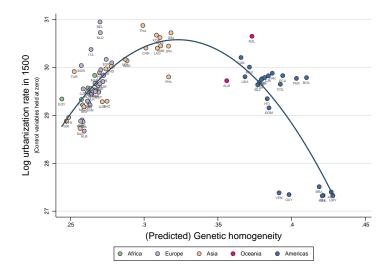
Bootstrap standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Ömer Özak

Genetic Diversity and Development

Robustness to the Use of Urbanization Rates in 1500

	(1)	(2)	(3)	(4)	(5)
	Dependent Variable: Log Urbanization Rate in 1500				
Predicted Diversity	120.583** (51.618)	165.167*** (50.088)	93.467* (48.769)	148.757*** (48.373)	234.410*** (67.321)
Predicted Diversity Square	-84.760** (38.423)	-120.124*** (37.208)	-62.408* (36.650)	-106.165*** (36.506)	-166.786*** (48.780)
Log Years since NR		0.457** (0.224)		0.402** (0.202)	0.752*** (0.257)
Log % of Arable Land			-0.097** (0.043)	-0.116*** (0.044)	-0.119** (0.052)
Log Absolute Latitude			-0.334** (0.151)	-0.236 (0.155)	-0.151 (0.170)
Log Agri. Suitability			0.002 (0.057)	-0.036 (0.058)	0.031 (0.059)
Continent Dummies	No	No	No	No	Yes
Observations	80	80	80	80	80
R-squared	0.30	0.35	0.40	0.44	0.51


Bootstrap standard errors in parentheses; *** p $\,<$ 0.01, ** p $\,<$ 0.05, * p $\,<$ 0.1.

Ömer Özak

Genetic Diversity and Development

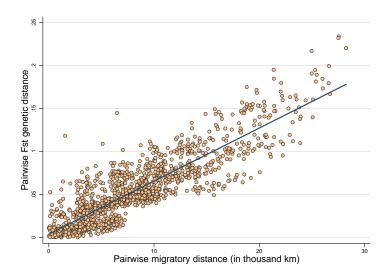
Growth & Comparative Development 59 / 91

Genetic Diversity and Urbanization Rates in 1500

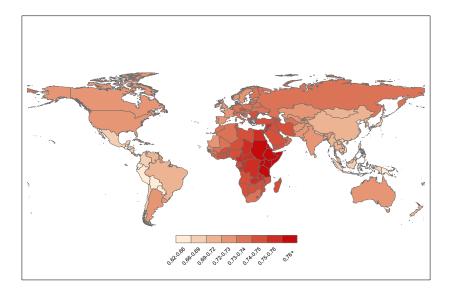
• The index of contemporary genetic diversity captures:

- Proportional representation of each ancestral population within a country
- Genetic diversity among the ancestral populations of each country
 - Projected based on migratory distance of this ancestral population from East Africa
- Genetic distance between all pairs of ancestral populations of each country
 - Projected based on migratory distance between these ancestral populations

- The index of contemporary genetic diversity captures:
 - Proportional representation of each ancestral population within a country
 - Genetic diversity among the ancestral populations of each country
 - Projected based on migratory distance of this ancestral population from East Africa
 - Genetic distance between all pairs of ancestral populations of each country
 - Projected based on migratory distance between these ancestral populations


- The index of contemporary genetic diversity captures:
 - Proportional representation of each ancestral population within a country
 - Genetic diversity among the ancestral populations of each country
 - Projected based on migratory distance of this ancestral population from East Africa
 - Genetic distance between all pairs of ancestral populations of each country
 - Projected based on migratory distance between these ancestral populations

- The index of contemporary genetic diversity captures:
 - Proportional representation of each ancestral population within a country
 - Genetic diversity among the ancestral populations of each country
 - Projected based on migratory distance of this ancestral population from East Africa
 - Genetic distance between all pairs of ancestral populations of each country
 - Projected based on migratory distance between these ancestral populations


- The index of contemporary genetic diversity captures:
 - Proportional representation of each ancestral population within a country
 - Genetic diversity among the ancestral populations of each country
 - Projected based on migratory distance of this ancestral population from East Africa
 - Genetic distance between all pairs of ancestral populations of each country
 - Projected based on migratory distance between these ancestral populations

- The index of contemporary genetic diversity captures:
 - Proportional representation of each ancestral population within a country
 - Genetic diversity among the ancestral populations of each country
 - Projected based on migratory distance of this ancestral population from East Africa
 - Genetic distance between all pairs of ancestral populations of each country
 - Projected based on migratory distance between these ancestral populations

Genetic Distance

Genetic Diversity across Countries in 2000

Ömer Özak

Genetic Diversity and Development

• Testing the hypothesis using contemporary genetic diversity

- 145-country sample
- Empirical specification

 $\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $G_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_i \equiv$ vector of institutional and cultural controls for country *i*
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

- Testing the hypothesis using contemporary genetic diversity
 - 145-country sample
- Empirical specification

 $\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $G_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_j \equiv$ vector of institutional and cultural controls for country μ
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

- Testing the hypothesis using contemporary genetic diversity
 - 145-country sample
- Empirical specification

$$\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $\hat{G}_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_i \equiv$ vector of institutional and cultural controls for country *i*
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

- Testing the hypothesis using contemporary genetic diversity
 - 145-country sample
- Empirical specification

$$\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $\hat{G}_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_i \equiv$ vector of institutional and cultural controls for country *i*
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

- Testing the hypothesis using contemporary genetic diversity
 - 145-country sample
- Empirical specification

$$\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $\hat{G}_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_i \equiv$ vector of institutional and cultural controls for country *i*
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

- Testing the hypothesis using contemporary genetic diversity
 - 145-country sample
- Empirical specification

$$\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $\hat{G}_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_i \equiv$ vector of institutional and cultural controls for country *i*
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

- Testing the hypothesis using contemporary genetic diversity
 - 145-country sample
- Empirical specification

$$\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $\hat{G}_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_i \equiv$ vector of institutional and cultural controls for country *i*
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

- Testing the hypothesis using contemporary genetic diversity
 - 145-country sample
- Empirical specification

$$\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $\hat{G}_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_i \equiv$ vector of institutional and cultural controls for country *i*
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

- Testing the hypothesis using contemporary genetic diversity
 - 145-country sample
- Empirical specification

$$\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $\hat{G}_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_i \equiv$ vector of institutional and cultural controls for country *i*
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

- Testing the hypothesis using contemporary genetic diversity
 - 145-country sample
- Empirical specification

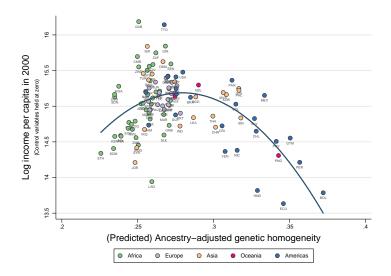
$$\ln y_i = \gamma_0 + \gamma_1 \hat{G}_i + \gamma_2 \hat{G}_i^2 + \gamma_3 \ln T_i + \gamma'_4 \ln X_i + \gamma'_5 \ln \Lambda_i + \gamma_6 \ln \Gamma_i + \eta_i$$

- $y_i \equiv$ income per capita of country *i* in the year 2000
- $\hat{G}_i \equiv$ index of contemporary genetic diversity of country *i*
- $T_i \equiv$ years elapsed since the Neolithic Revolution (NR) for country *i*
- $X_i \equiv$ vector of land productivity controls for country *i*
- $\Lambda_i \equiv$ vector of institutional and cultural controls for country *i*
- $\Gamma_i \equiv$ vector of additional geographical controls for country *i*
- $\eta_i \equiv$ error term for country *i*

Genetic Diversity and Economic Development in 2000 and 1500

	(1)	(2)	(3)	(4)
	Lo	og Income per Ca in 2000	Log Population Densit in 1500	
Adjusted Diversity	204.610** (88.466)	237.238*** (86.278)	244.960*** (85.454)	
Adjusted Diversity Sqr.	-143.437** (62.545)	-166.507*** (61.363)	-171.364*** (60.843)	
Unadjusted. Diversity			(*****)	198.587** (79.110)
Unadjusted. Diversity Sqr.				-145.320*** (55.472)
Log Adj. Years since NR		0.061 (0.262)	0.002 (0.305)	
Log Years since NR	-0.151 (0.186)			1.238*** (0.230)
Log % of Arable Land	-0.110 (0.100)	-0.119 (0.107)	-0.137 (0.111)	0.378*** (0.100)
Log Absolute Latitude	0.164 (0.125)	0.172 (0.119)	0.192 (0.143)	-0.423*** (0.124)
Log Agri. Suitability	-0.193** (0.095)	-0.177* (0.102)	-0.189* (0.102)	0.264*** (0.096)
Log Population Density in 1500			0.047 (0.097)	
Optimal Diversity	0.713 (0.100)	0.712 (0.036)	0.715 (0.118)	0.683 (0.095)
Continent Dummies	Yes	Yes	Yes	Yes
Observations R-squared	143 0.57	143 0.57	143 0.57	143 0.68

Bootstrap standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.


Genetic Diversity and Comparative Development in 2000

	(1)	(2)	(3)	(4)	(5)			
	Dependent Variable: Log Income per Capita in 2000							
Adjusted Diversity	315.282*** (84.215)	225.858*** (67.669)	204.102*** (66.984)	277.342*** (70.232)	215.675*** (63.954)			
Adjusted Diversity Sqr.	-220.980*** (59.562)	-155.826*** (47.962)	-140.850*** (47.393)	-192.386*** (49.675)	-150.871*** (45.554)			
Log Adj. Time from NR	-0.273 (0.269)	-0.092 (0.200)	-0.062 (0.203)	0.396*	-0.046 (0.208)			
Log % of Arable Land	-0.218*** (0.061)	-0.159*** (0.049)	-0.163*** (0.050)	-0.183*** (0.051)	-0.084 (0.056)			
Log Absolute Latitude	0.123 (0.122)	0.083 (0.100)	0.080 (0.101)	0.009 (0.108)	-0.006 (0.087)			
Social Infrastructure		2.359*** (0.269)	2.069*** (0.377)	1.826*** (0.417)	0.880** (0.418)			
Democracy			0.036 (0.029)					
Ethnic Fractionalization			. ,	-0.333 (0.280)	-0.122 (0.265)			
% Population at Risk of Contracting Malaria				-0.502 (0.351)	-0.723** (0.353)			
Avg. Schooling					0.134*** (0.042)			
Optimal Diversity	0.713 (0.014)	0.725 (0.032)	0.725 (0.045)	0.721 (0.008)	0.715 (0.073)			
Continent Dummies	Yes	Yes	Yes	Yes	Yes			
Legal Origin Dummies	No	No	No	Yes	Yes			
Major Religion Shares	No	No	No	Yes	Yes			
Observations	109	109	109	109	94			
R-squared	0.74	0.84	0.85 *** p<0.01, ** p<	0.90	0.93			

Ömer Özak

Genetic Diversity and Development

Genetic Diversity and Comparative Development in 2000

 \bullet Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206

• Increasing GD of Bolivia (0.63), the most homogeneous country, by:

• 0.09 \implies 5.4-fold increase income per capita in 2000

 \sim From 9% to 40% of that of the US .

• $0.01 \implies 39\%$ increase income per capita in 2000

• Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:

ullet 0.05 \implies 1.7-fold increase in income per capita in 2000

From 2% to 4% of that of the US

- 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD

- Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:

0.09 ⇒ 5.4-fold increase income per capita in 2000
 From 9% to 40% of that of the US

• 0.01 \implies 39% increase income per capita in 2000

- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 - 0.05 \implies 1.7-fold increase in income per capita in 2000

 \sim From 2% to 4% of that of the US

- 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD

• Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206

• Increasing GD of Bolivia (0.63), the most homogeneous country, by:

• 0.09 \implies 5.4-fold increase income per capita in 2000

• From 9% to 40% of that of the US

• 0.01 \implies 39% increase income per capita in 2000

• Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:

ullet 0.05 \implies 1.7-fold increase in income per capita in 2000

 \sim From 2% to 4% of that of the US

- 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD

• Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206

• Increasing GD of Bolivia (0.63), the most homogeneous country, by:

- 0.09 \implies 5.4-fold increase income per capita in 2000
 - $\bullet\,$ From 9% to 40% of that of the US
- 0.01 \implies 39% increase income per capita in 2000

• Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:

• 0.05 \implies 1.7-fold increase in income per capita in 2000

 \sim From 2% to 4% of that of the US

- 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD

- Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
 - 0.01 \implies 39% increase income per capita in 2000
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 0.05 => 1.7-fold increase in income per capita in 2000
 - ullet 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD
 - $ullet \implies 1.9\%$ decrease in income per capita in 2000

- Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
 - 0.01 \implies 39% increase income per capita in 2000
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 - 0.05 ⇒ 1.7-fold increase in income per capita in 2000
 From 2% to 4% of that of the US
 - 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD
 - $ullet \longrightarrow 1.9\%$ decrease in income per capita in 2000

- Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
 - 0.01 \implies 39% increase income per capita in 2000
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 - 0.05 \implies 1.7-fold increase in income per capita in 2000
 - From 2% to 4% of that of the US
 - 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD

- Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
 - 0.01 \implies 39% increase income per capita in 2000
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 - 0.05 \implies 1.7-fold increase in income per capita in 2000
 - From 2% to 4% of that of the US
 - 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD

- Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
 - 0.01 \implies 39% increase income per capita in 2000
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 - 0.05 \implies 1.7-fold increase in income per capita in 2000
 - From 2% to 4% of that of the US
 - 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD

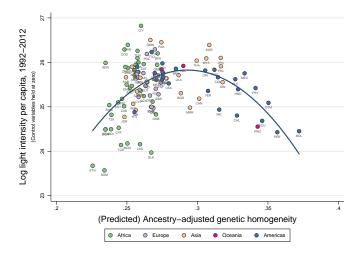
• \implies 1.9% decrease in income per capita in 2000

- Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
 - 0.01 \implies 39% increase income per capita in 2000
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 - 0.05 \implies 1.7-fold increase in income per capita in 2000
 - From 2% to 4% of that of the US
 - 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD

• \implies 1.9% decrease in income per capita in 2000

- Optimal GD in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
 - 0.01 \implies 39% increase income per capita in 2000
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 - 0.05 \implies 1.7-fold increase in income per capita in 2000
 - From 2% to 4% of that of the US
 - 0.01 \implies 21% increase in income per capita in 2000
- 0.01 change from the optimal level of GD
 - \implies 1.9% decrease in income per capita in 2000

Addressing Endogenous Post-1500 Migrations

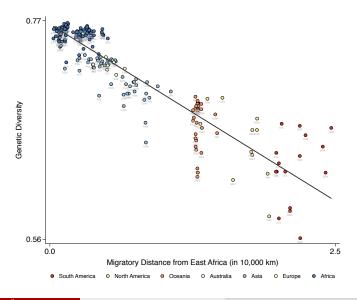

	(1)	(2)	(3)	(4)	(5)	(6)				
	Full	Non	w/o Neo	w/o Latin	w/o Sub	>0.97				
	Sample	OECD	Europes	America	Sahara	Indigenous				
	Dependent Variable is Log Income per Capita in 2000									
Adjusted Diversity	277.342***	271.979***	261.367***	412.222***	264.805**	304.735**				
	(70.232)	(88.479)	(70.533)	(148.584)	(111.365)	(111.588)				
Adjusted Diversity Sqr.	-192.386***	-188.974***	-181.811***	-287.067***	-183.863**	-213.389**				
	(49.675)	(62.096)	(49.671)	(101.906)	(80.398)	(77.255)				
Log Adj. Time of NR	0.396*	0.390	0.355	0.518*	0.068	0.448*				
	(0.233)	(0.281)	(0.231)	(0.298)	(0.442)	(0.254)				
Log % of Arable Land	-0.183***	-0.236***	-0.201***	-0.189 ^{***}	-0.211**	-0.104				
	(0.051)	(0.060)	(0.055)	(0.050)	(0.097)	(0.061)				
Log Absolute Latitude	0.009 (0.108)	-0.021 (0.119)	-0.025 (0.111)	-0.139 (0.126)	0.218 (0.242)	-0.074 (0.130)				
Social Infrastructure	1.826***	1.313**	1.416***	2.044***	1.585***	1.311*				
	(0.417)	(0.579)	(0.507)	(0.545)	(0.486)	(0.716)				
Ethnic Frac.	-0.333	-0.437	-0.390	-0.752**	0.104	-0.044				
	(0.280)	(0.375)	(0.300)	(0.348)	(0.408)	(0.412)				
% Population at Risk	-0.502	-0.605	-0.591	-0.308	-0.425	-0.153				
of Malaria	(0.351)	(0.381)	(0.370)	(0.486)	(0.581)	(0.434)				
% Population Living	-0.319	-0.196	-0.302	-0.520**	-0.528	-0.339				
in Tropical Zones	(0.204)	(0.239)	(0.219)	(0.252)	(0.341)	(0.312)				
Optimal Diversity	0.721	0.720	0.719	0.718	0.720	0.714				
	(0.083)	(0.085)	(0.015)	(0.023)	(0.180)	(0.012)				
Observations	109	83	105	87	71	37				
R-squared	0.90	0.82	0.89	0.93	0.86	0.98				

Ömer Özak

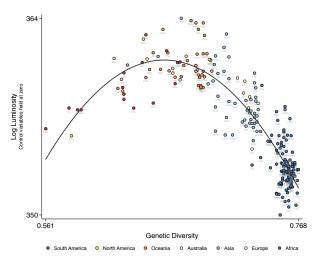
Genetic Diversity and Development

Growth & Comparative Development 69 / 91

Genetic Diversity and Light Intensity per Capita 1992-2012

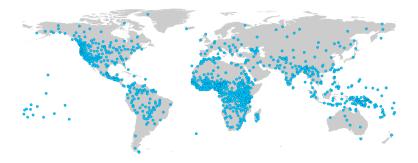

Source: Ashraf-Galor-Klemp (2014)

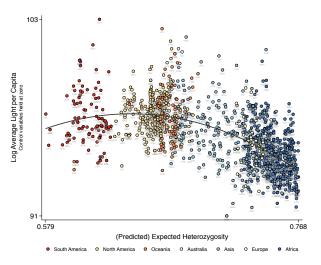
Observed Genetic Diversity - 232 Ethnic Groups



Ömer Özak

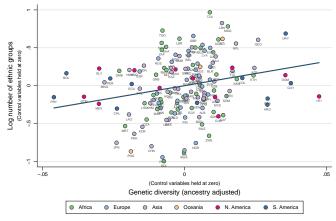
Migratory Distance from Africa and Genetic Diversity


Genetic Diversity and Productivity of Ethnic Group - (IV Regressions)


Source: Ashraf-Galor-Klemp (2015)

Ömer Özak

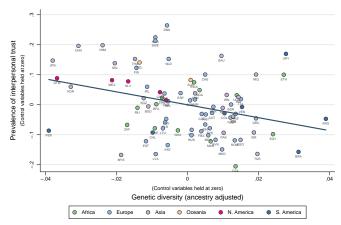
Predicted Genetic Diversity - 1331 Ethnic Groups


Predicted Genetic Diversity - 1331 Ethnic Groups

Source: Ashraf-Galor-Klemp (2015)

Ömer Özak

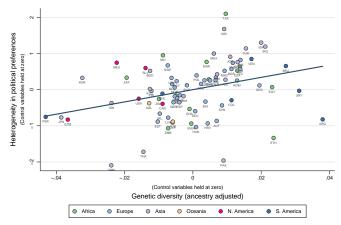
Cost of Diversity: Genetic Diversity & Cultural Fragmentation



Relationship conditional on historical and geographical controls, as well as continent fixed effects Slope coefficient = 6.397; (robust) standard error = 1.973; t-statistic = 3.242; partial R-squared = 0.059; observations = 144

Source: Ashraf and Galor (2013b)

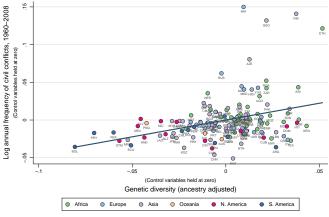
Source: Ashraf-Galor (AER, May 2013)


Cost of Diversity: Genetic Diversity & Trust

Relationship conditional on geographical controls and region fixed effects Slope coefficient = -2.151; (robust) standard error = 0.756; t-statistic = -2.845; partial R-squared = 0.105; observations = 84

Slope coefficient = -2.151; (robust) standard error = 0.756; 1-statistic = -2.846; partial R-squared = 0.105; observations = 6

Cost of Diversity: Genetic Diversity & Heterogeneity in Preferences

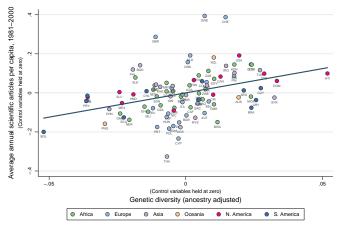


Relationship conditional on geographical controls and region fixed effects

Slope coefficient = 16.963; (robust) standard error = 5.954; t-statistic = 2.849; partial R-squared = 0.111; observations = 81

Source: Arbatli, Ashraf, and Galor (2015)

Cost of Diversity: Genetic Diversity & Ethnic Civil Conflict


Relationship conditional on geographical cont

Slope coefficient = 0.445; (robust) standard error = 0.117; t-statistic = 3.790; partial R-squared = 0.112; observations = 151

Source: Arbatli, Ashraf, and Galor (2015)

Source: Arbatli-Ashraf-Galor-Klemp (2016)

Benefits of Diversity - Genetic Diversity & Scientific Research

Relationship conditional on historical, geographical, and institutional controls, as well as continent fixed effects Sloce coefficient = 2.484: (robust) standard error = 0.511: 1-statistic = 4.884: partial R-squared = 0.131: observations = 93

Slope coefficient = 2.484; (robust) standard error = 0.511; t-statistic = 4.864; partial R-squared = 0.131; observations = Source: Ashraf and Galor (2013a)

- The distribution of genetic diversity across the globe
- Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution
 - Affected comprative developmemt till around 1500
 - Has no persistent effect on comparative development in the modern era

- The distribution of genetic diversity across the globe
- Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution
 - Affected comprative developmemt till around 1500
 - Has no persistent effect on comparative development in the modern era

- The distribution of genetic diversity across the globe
- Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution
 - Affected comprative developmemt till around 1500
 - Has no persistent effect on comparative development in the modern era

- The distribution of genetic diversity across the globe
- Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution
 - Affected comprative development till around 1500
 - Has no persistent effect on comparative development in the modern era

- The distribution of genetic diversity across the globe
- Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution
 - Affected comprative developmemt till around 1500
 - Has no persistent effect on comparative development in the modern era

- The distribution of genetic diversity across the globe
- Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution
 - Affected comprative development till around 1500
 - Has no persistent effect on comparative development in the modern era

- The migration of humans out of Africa 70,000-90,000 BP affected
 - The distribution of genetic diversity across the globe
 - Comparative economic development
 - Accounts for 16% of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution
 - Affected comprative developmemt till around 1500
 - Has no persistent effect on comparative development in the modern era

- Diversity adversely affects the cohesiveness of society, increasing the incidence of:
 - Mistrust (Ashraf-Galor, AER 2013)
 - Civil conflicts (Arbatli-Ashraf-Galor, 2015)
 - Ethnic fractionalization (Ashraf-Galor, AER P&P 2013)
- Diversity enhances innovations and knowledge creation

- Diversity adversely affects the cohesiveness of society, increasing the incidence of:
 - Mistrust (Ashraf-Galor, AER 2013)
 - Civil conflicts (Arbatli-Ashraf-Galor, 2015)
 - Ethnic fractionalization (Ashraf-Galor, AER P&P 2013)
- Diversity enhances innovations and knowledge creation

- Diversity adversely affects the cohesiveness of society, increasing the incidence of:
 - Mistrust (Ashraf-Galor, AER 2013)
 - Civil conflicts (Arbatli-Ashraf-Galor, 2015)
 - Ethnic fractionalization (Ashraf-Galor, AER P&P 2013)
- Diversity enhances innovations and knowledge creation

- Diversity adversely affects the cohesiveness of society, increasing the incidence of:
 - Mistrust (Ashraf-Galor, AER 2013)
 - Civil conflicts (Arbatli-Ashraf-Galor, 2015)
 - Ethnic fractionalization (Ashraf-Galor, AER P&P 2013)
- Diversity enhances innovations and knowledge creation

- Diversity adversely affects the cohesiveness of society, increasing the incidence of:
 - Mistrust (Ashraf-Galor, AER 2013)
 - Civil conflicts (Arbatli-Ashraf-Galor, 2015)
 - Ethnic fractionalization (Ashraf-Galor, AER P&P 2013)
- Diversity enhances innovations and knowledge creation

Education policy

- In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 Mitigating the cost of diversity
- In overly-homogeneous societies:
 - cultivation of cultural diversity
 - \implies substitute for low genetic diversity
- Optimal level of cultural assimilation

Education policy

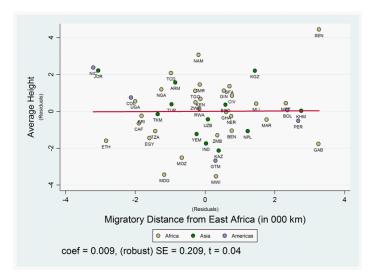
- In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - ullet \Longrightarrow Mitigating the cost of diversity
- In overly-homogeneous societies:
 - cultivation of cultural diversity
 - \implies substitute for low genetic diversity
- Optimal level of cultural assimilation

- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - \implies Mitigating the cost of diversity
 - In overly-homogeneous societies:
 - cultivation of cultural diversity
 - $\bullet \implies$ substitute for low genetic diversity
- Optimal level of cultural assimilation

- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - $\bullet \implies \mathsf{Mitigating \ the \ cost \ of \ diversity}$
 - In overly-homogeneous societies:
 - cultivation of cultural diversity
 cubstitute for low genetic diversity
 - \Rightarrow substitute for low genetic diversity
- Optimal level of cultural assimilation

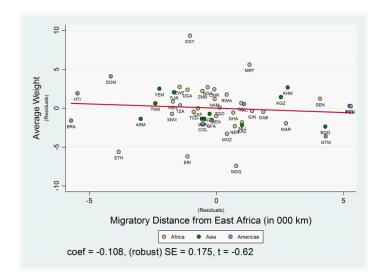
- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - $\bullet \implies \mathsf{Mitigating \ the \ cost \ of \ diversity}$
 - In overly-homogeneous societies:
 - cultivation of cultural diversity
 → substitute for low genetic diversity
- Optimal level of cultural assimilation

- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - $\bullet \implies \mathsf{Mitigating \ the \ cost \ of \ diversity}$
 - In overly-homogeneous societies:
 - cultivation of cultural diversity
 - \implies substitute for low genetic diversity

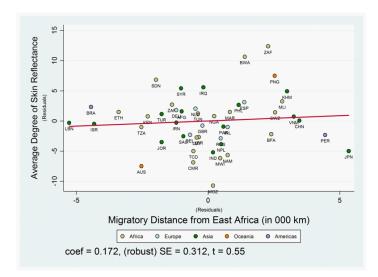

• Optimal level of cultural assimilation

- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - $\bullet \implies \mathsf{Mitigating \ the \ cost \ of \ diversity}$
 - In overly-homogeneous societies:
 - cultivation of cultural diversity
 - ullet \Longrightarrow substitute for low genetic diversity

• Optimal level of cultural assimilation


- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - $\bullet \implies \mathsf{Mitigating \ the \ cost \ of \ diversity}$
 - In overly-homogeneous societies:
 - cultivation of cultural diversity
 - ullet \Longrightarrow substitute for low genetic diversity
- Optimal level of cultural assimilation

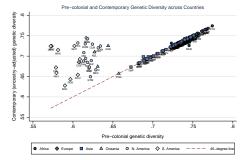
Migratory Distance from East Africa and Height


Accounting for distance from the equator.

Migratory Distance from East Africa and Weight

Accounting for distance from the equator.

Migratory Distance from East Africa and Skin Reflectance


Accounting for distance from the equator.

Migratory Distance from East Africa and IQ

Accounting for distance from the equator.

The Impact of Post-1500 Migrations on Genetic Diversity

Correlation in the global sample = 0.750; correlation in the Old-World sample = 0.993

Theoretical Foundations of the Hump-Shaped Effect of Diversity

$$y = (1 - \alpha \omega) A(z, \omega) f(x) \equiv y(\omega); \qquad \alpha \in (0, 1)$$

• $y \equiv$ output per capita

- $A(z, \omega) \equiv$ technological level
- $\omega \in [0,1] \equiv$ degree of diversity
- $z \equiv$ institutional, geographical, and human capital factors
- $f(x) \equiv$ production function
- $x \equiv$ inputs per capita

$$y = (1 - \alpha \omega)A(z, \omega)f(x) \equiv y(\omega); \qquad \alpha \in (0, 1)$$

- $y \equiv$ output per capita
- $A(z, \omega) \equiv$ technological level
- $\omega \in [0,1] \equiv$ degree of diversity
- $z \equiv$ institutional, geographical, and human capital factors
- $f(x) \equiv$ production function
- $x \equiv$ inputs per capita

$$y = (1 - \alpha \omega)A(z, \omega)f(x) \equiv y(\omega); \qquad \alpha \in (0, 1)$$

- $y \equiv$ output per capita
- $A(z, \omega) \equiv$ technological level
- $\omega \in [0,1] \equiv$ degree of diversity
- $z \equiv$ institutional, geographical, and human capital factors
- $f(x) \equiv$ production function
- $x \equiv$ inputs per capita

$$y = (1 - \alpha \omega)A(z, \omega)f(x) \equiv y(\omega); \qquad \alpha \in (0, 1)$$

- $y \equiv$ output per capita
- $A(z,\omega) \equiv$ technological level
- $\omega \in [0,1] \equiv$ degree of diversity
- $z \equiv$ institutional, geographical, and human capital factors
- $f(x) \equiv$ production function
- $x \equiv$ inputs per capita

$$y = (1 - \alpha \omega)A(z, \omega)f(x) \equiv y(\omega); \qquad \alpha \in (0, 1)$$

- $y \equiv$ output per capita
- $A(z,\omega) \equiv$ technological level
- $\omega \in [0,1] \equiv$ degree of diversity
- $z \equiv$ institutional, geographical, and human capital factors
- $f(x) \equiv$ production function
- $x \equiv$ inputs per capita

$$y = (1 - \alpha \omega)A(z, \omega)f(x) \equiv y(\omega); \qquad \alpha \in (0, 1)$$

- $y \equiv$ output per capita
- $A(z, \omega) \equiv$ technological level
- $\omega \in [0,1] \equiv$ degree of diversity
- $z \equiv$ institutional, geographical, and human capital factors
- $f(x) \equiv$ production function
- $x \equiv$ inputs per capita

• Diversity and TFP growth

$$egin{aligned} & A(z,\omega) > 0, \ A_{\omega}(z,\omega) > 0, \ A_{\omega\omega}(z,\omega) < 0 \ & \lim_{\omega \longrightarrow 0} A_{\omega}(z,\omega) = \infty; \ \lim_{\omega \longrightarrow 1} A_{\omega}(z,\omega) = 0 \end{aligned}$$

• For instance:

$$A(z,\omega) = z \int_0^\omega \omega_i^\theta di \qquad \theta \in (0,1)$$

• Diversity and TFP growth

$$egin{aligned} & A(z,\omega) > 0, \ A_{\omega}(z,\omega) > 0, \ A_{\omega\omega}(z,\omega) < 0 \ & \lim_{\omega \longrightarrow 0} A_{\omega}(z,\omega) = \infty; \ \lim_{\omega \longrightarrow 1} A_{\omega}(z,\omega) = 0 \end{aligned}$$

• For instance:

$$A(z,\omega)=z\int_0^\omega \omega_i^ heta di \qquad heta\in(0,1)$$

• Properties of $y(\omega)$

$$y'(\omega) = [(1 - \alpha\omega)A_{\omega}(z, \omega) - \alpha A(z, \omega)]f(x)$$
$$y''(\omega) = [(1 - \alpha\omega)A_{\omega\omega}(z, \omega) - 2\alpha A_{\omega}(z, \omega)]f(x) < 0$$
$$\lim_{\omega \longrightarrow 0} y'(\omega) > 0; \quad \lim_{\omega \longrightarrow 1} y'(\omega) < 0$$